FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery

计算机科学 人工智能 分割 光学(聚焦) 透视图(图形) 关系(数据库) 地理空间分析 瓶颈 模式识别(心理学) 图像分割 对象(语法) 计算机视觉 联营 数据挖掘 遥感 地理 嵌入式系统 物理 光学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13715-13729 被引量:17
标识
DOI:10.1109/tpami.2023.3296757
摘要

Geospatial object segmentation, a fundamental Earth vision task, always suffers from scale variation, the larger intra-class variance of background, and foreground-background imbalance in high spatial resolution (HSR) remote sensing imagery. Generic semantic segmentation methods mainly focus on the scale variation in natural scenarios. However, the other two problems are insufficiently considered in large area Earth observation scenarios. In this paper, we propose a foreground-aware relation network (FarSeg++) from the perspectives of relation-based, optimization-based, and objectness-based foreground modeling, alleviating the above two problems. From the perspective of the relations, the foreground-scene relation module improves the discrimination of the foreground features via the foreground-correlated contexts associated with the object-scene relation. From the perspective of optimization, foreground-aware optimization is proposed to focus on foreground examples and hard examples of the background during training to achieve a balanced optimization. Besides, from the perspective of objectness, a foreground-aware decoder is proposed to improve the objectness representation, alleviating the objectness prediction problem that is the main bottleneck revealed by an empirical upper bound analysis. We also introduce a new large-scale high-resolution urban vehicle segmentation dataset to verify the effectiveness of the proposed method and push the development of objectness prediction further forward. The experimental results suggest that FarSeg++ is superior to the state-of-the-art generic semantic segmentation methods and can achieve a better trade-off between speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
657完成签到 ,获得积分10
刚刚
刚刚
执念完成签到 ,获得积分10
1秒前
ECCE713完成签到,获得积分10
1秒前
小刺完成签到,获得积分10
1秒前
sweetbearm应助zxl采纳,获得10
1秒前
优秀的盼夏完成签到,获得积分10
2秒前
传奇3应助沉敛一生采纳,获得10
2秒前
科研通AI5应助咕噜仔采纳,获得50
2秒前
lm完成签到,获得积分20
2秒前
FFF发布了新的文献求助10
3秒前
小二郎应助哈哈采纳,获得10
3秒前
乐乐应助juan采纳,获得10
4秒前
txyouniverse完成签到 ,获得积分10
4秒前
CodeCraft应助纷花雨采纳,获得10
4秒前
小十二完成签到,获得积分10
4秒前
Tianxu Li发布了新的文献求助10
5秒前
月白完成签到,获得积分10
5秒前
淡淡de橙子完成签到,获得积分10
6秒前
含蓄哈密瓜完成签到,获得积分20
6秒前
7秒前
小蘑菇应助白华苍松采纳,获得10
7秒前
董咚咚完成签到,获得积分10
9秒前
洋芋片完成签到 ,获得积分10
9秒前
二尖瓣后叶完成签到,获得积分10
10秒前
zc完成签到,获得积分10
10秒前
酷波er应助dildil采纳,获得10
10秒前
科研通AI5应助科研小民工采纳,获得10
11秒前
觅桃乌龙发布了新的文献求助10
11秒前
张有志完成签到,获得积分10
11秒前
JoyceeZHONG完成签到,获得积分10
11秒前
Shine完成签到 ,获得积分10
11秒前
12秒前
King16发布了新的文献求助10
13秒前
哲000完成签到,获得积分10
13秒前
Tutusamo发布了新的文献求助10
13秒前
Ning完成签到,获得积分10
14秒前
科研通AI5应助欢欢采纳,获得10
14秒前
xiaozou55完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759