FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery

计算机科学 人工智能 分割 光学(聚焦) 透视图(图形) 关系(数据库) 地理空间分析 瓶颈 模式识别(心理学) 图像分割 对象(语法) 计算机视觉 联营 数据挖掘 遥感 地理 嵌入式系统 物理 光学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (11): 13715-13729 被引量:35
标识
DOI:10.1109/tpami.2023.3296757
摘要

Geospatial object segmentation, a fundamental Earth vision task, always suffers from scale variation, the larger intra-class variance of background, and foreground-background imbalance in high spatial resolution (HSR) remote sensing imagery. Generic semantic segmentation methods mainly focus on the scale variation in natural scenarios. However, the other two problems are insufficiently considered in large area Earth observation scenarios. In this paper, we propose a foreground-aware relation network (FarSeg++) from the perspectives of relation-based, optimization-based, and objectness-based foreground modeling, alleviating the above two problems. From the perspective of the relations, the foreground-scene relation module improves the discrimination of the foreground features via the foreground-correlated contexts associated with the object-scene relation. From the perspective of optimization, foreground-aware optimization is proposed to focus on foreground examples and hard examples of the background during training to achieve a balanced optimization. Besides, from the perspective of objectness, a foreground-aware decoder is proposed to improve the objectness representation, alleviating the objectness prediction problem that is the main bottleneck revealed by an empirical upper bound analysis. We also introduce a new large-scale high-resolution urban vehicle segmentation dataset to verify the effectiveness of the proposed method and push the development of objectness prediction further forward. The experimental results suggest that FarSeg++ is superior to the state-of-the-art generic semantic segmentation methods and can achieve a better trade-off between speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
里lilili发布了新的文献求助10
刚刚
刚刚
itsdatou发布了新的文献求助20
1秒前
紫薰发布了新的文献求助10
1秒前
1秒前
搜集达人应助和叶采纳,获得10
1秒前
Woodward完成签到,获得积分10
2秒前
田様应助soni采纳,获得10
3秒前
hahasail发布了新的文献求助10
3秒前
科研通AI6应助调皮的涵易采纳,获得30
3秒前
HAHA发布了新的文献求助10
4秒前
斯文败类应助周艳鸿采纳,获得10
4秒前
司喻关注了科研通微信公众号
4秒前
秋季发布了新的文献求助20
4秒前
李小猪发布了新的文献求助10
4秒前
5秒前
SherlockJia发布了新的文献求助10
6秒前
拾荒者完成签到,获得积分10
6秒前
苍刺发布了新的文献求助20
6秒前
十一发布了新的文献求助10
7秒前
7秒前
猪猪侠发布了新的文献求助10
7秒前
8秒前
双双拜托了完成签到 ,获得积分10
8秒前
李健的粉丝团团长应助M3L2采纳,获得50
8秒前
CodeCraft应助张永明采纳,获得10
9秒前
niubi完成签到,获得积分10
10秒前
虚心茉莉完成签到,获得积分10
10秒前
今后应助江浔采纳,获得10
10秒前
Owen应助LYT采纳,获得10
10秒前
11秒前
车梓银完成签到 ,获得积分10
11秒前
11秒前
大Doctor陈发布了新的文献求助30
11秒前
以赛亚王完成签到,获得积分10
12秒前
laity完成签到,获得积分10
12秒前
12秒前
是瓜瓜不发布了新的文献求助10
12秒前
xuxu77发布了新的文献求助10
13秒前
在水一方应助HAHA采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251653
求助须知:如何正确求助?哪些是违规求助? 4415731
关于积分的说明 13747051
捐赠科研通 4287495
什么是DOI,文献DOI怎么找? 2352481
邀请新用户注册赠送积分活动 1349315
关于科研通互助平台的介绍 1308791