FarSeg++: Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery

计算机科学 人工智能 分割 光学(聚焦) 透视图(图形) 关系(数据库) 地理空间分析 瓶颈 模式识别(心理学) 图像分割 对象(语法) 计算机视觉 联营 数据挖掘 遥感 地理 嵌入式系统 物理 光学
作者
Zhuo Zheng,Yanfei Zhong,Junjue Wang,Ailong Ma,Liangpei Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13715-13729 被引量:17
标识
DOI:10.1109/tpami.2023.3296757
摘要

Geospatial object segmentation, a fundamental Earth vision task, always suffers from scale variation, the larger intra-class variance of background, and foreground-background imbalance in high spatial resolution (HSR) remote sensing imagery. Generic semantic segmentation methods mainly focus on the scale variation in natural scenarios. However, the other two problems are insufficiently considered in large area Earth observation scenarios. In this paper, we propose a foreground-aware relation network (FarSeg++) from the perspectives of relation-based, optimization-based, and objectness-based foreground modeling, alleviating the above two problems. From the perspective of the relations, the foreground-scene relation module improves the discrimination of the foreground features via the foreground-correlated contexts associated with the object-scene relation. From the perspective of optimization, foreground-aware optimization is proposed to focus on foreground examples and hard examples of the background during training to achieve a balanced optimization. Besides, from the perspective of objectness, a foreground-aware decoder is proposed to improve the objectness representation, alleviating the objectness prediction problem that is the main bottleneck revealed by an empirical upper bound analysis. We also introduce a new large-scale high-resolution urban vehicle segmentation dataset to verify the effectiveness of the proposed method and push the development of objectness prediction further forward. The experimental results suggest that FarSeg++ is superior to the state-of-the-art generic semantic segmentation methods and can achieve a better trade-off between speed and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChemistryZyh发布了新的文献求助10
刚刚
Zxc发布了新的文献求助10
2秒前
研友_8YoR0n完成签到,获得积分0
2秒前
Wu发布了新的文献求助10
2秒前
路人甲完成签到,获得积分10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
诚心晓露发布了新的文献求助10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
Phosphene应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
1257应助yumemakase采纳,获得10
5秒前
Hello应助坚定尔白采纳,获得10
6秒前
paparazzi221应助FIN采纳,获得50
6秒前
6秒前
6秒前
7秒前
8秒前
Wu完成签到,获得积分10
8秒前
隐形曼青应助Zxc采纳,获得10
9秒前
Lucas应助ChemistryZyh采纳,获得10
9秒前
陆磊磊完成签到,获得积分10
10秒前
高分求助中
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3109561
求助须知:如何正确求助?哪些是违规求助? 2760219
关于积分的说明 7659157
捐赠科研通 2414928
什么是DOI,文献DOI怎么找? 1281538
科研通“疑难数据库(出版商)”最低求助积分说明 618679
版权声明 599445