Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers

结直肠癌 特征选择 机器学习 支持向量机 人工智能 癌症 医学 肿瘤科 生物信息学 计算机科学 内科学 生物
作者
Wei Wei,Yixue Li,Tao Huang
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:24 (13): 11133-11133 被引量:7
标识
DOI:10.3390/ijms241311133
摘要

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide, and the identification of biomarkers can improve early detection and personalized treatment. In this study, RNA-seq data and gene chip data from TCGA and GEO were used to explore potential biomarkers for CRC. The SMOTE method was used to address class imbalance, and four feature selection algorithms (MCFS, Borota, mRMR, and LightGBM) were used to select genes from the gene expression matrix. Four machine learning algorithms (SVM, XGBoost, RF, and kNN) were then employed to obtain the optimal number of genes for model construction. Through interpretable machine learning (IML), co-predictive networks were generated to identify rules and uncover underlying relationships among the selected genes. Survival analysis revealed that INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3 were significantly correlated with prognosis in CRC patients. In addition, the CIBERSORT algorithm was used to investigate the proportion of immune cells in CRC tissues, and gene mutation rates for the five selected biomarkers were explored. The biomarkers identified in this study have significant implications for the development of personalized therapies and could ultimately lead to improved clinical outcomes for CRC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
春雨发布了新的文献求助10
刚刚
朵朵发布了新的文献求助10
刚刚
刚刚
顾矜应助张垚采纳,获得10
1秒前
冷傲松鼠完成签到 ,获得积分10
1秒前
邵初蓝完成签到,获得积分10
2秒前
3秒前
燕燕完成签到 ,获得积分10
3秒前
傻傻的修洁完成签到,获得积分10
3秒前
3秒前
uf欧发布了新的文献求助10
3秒前
称心的灵枫完成签到 ,获得积分20
3秒前
3秒前
4秒前
zik应助yy采纳,获得10
4秒前
4秒前
小蘑菇应助yiyi采纳,获得10
4秒前
炸鸡加热发布了新的文献求助10
4秒前
啊啊啊啊发布了新的文献求助10
4秒前
陈住气完成签到,获得积分10
4秒前
5秒前
5秒前
濯枝雨关注了科研通微信公众号
5秒前
bocai完成签到,获得积分10
5秒前
library2025发布了新的文献求助10
5秒前
慕山完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Jm完成签到,获得积分10
7秒前
Souveb完成签到,获得积分10
7秒前
精明人达发布了新的文献求助10
7秒前
静水流深关注了科研通微信公众号
7秒前
8秒前
铎幸福完成签到,获得积分10
8秒前
杨潇丶丶发布了新的文献求助10
8秒前
大反应釜完成签到,获得积分10
8秒前
憨憨完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034