已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers

结直肠癌 特征选择 机器学习 支持向量机 人工智能 癌症 医学 肿瘤科 生物信息学 计算机科学 内科学 生物
作者
Wei Wei,Yixue Li,Tao Huang
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (13): 11133-11133 被引量:7
标识
DOI:10.3390/ijms241311133
摘要

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide, and the identification of biomarkers can improve early detection and personalized treatment. In this study, RNA-seq data and gene chip data from TCGA and GEO were used to explore potential biomarkers for CRC. The SMOTE method was used to address class imbalance, and four feature selection algorithms (MCFS, Borota, mRMR, and LightGBM) were used to select genes from the gene expression matrix. Four machine learning algorithms (SVM, XGBoost, RF, and kNN) were then employed to obtain the optimal number of genes for model construction. Through interpretable machine learning (IML), co-predictive networks were generated to identify rules and uncover underlying relationships among the selected genes. Survival analysis revealed that INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3 were significantly correlated with prognosis in CRC patients. In addition, the CIBERSORT algorithm was used to investigate the proportion of immune cells in CRC tissues, and gene mutation rates for the five selected biomarkers were explored. The biomarkers identified in this study have significant implications for the development of personalized therapies and could ultimately lead to improved clinical outcomes for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
小明应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
深情安青应助afterglow采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
pathway完成签到 ,获得积分10
1秒前
万和风吟发布了新的文献求助10
2秒前
巫马完成签到,获得积分10
3秒前
李晓发布了新的文献求助10
5秒前
柴郡喵完成签到,获得积分10
6秒前
正直绿草完成签到,获得积分20
18秒前
李小伟完成签到,获得积分10
21秒前
不见山完成签到,获得积分10
22秒前
22秒前
Lucas应助linzhb6采纳,获得10
23秒前
23秒前
SolderOH完成签到,获得积分10
26秒前
Zz发布了新的文献求助10
26秒前
27秒前
不见山发布了新的文献求助10
28秒前
28秒前
32秒前
累加法发布了新的文献求助10
32秒前
33秒前
cc2941发布了新的文献求助10
33秒前
烧饼好好吃完成签到,获得积分10
37秒前
lemonyu发布了新的文献求助10
37秒前
38秒前
38秒前
余小琴完成签到 ,获得积分10
39秒前
hm发布了新的文献求助10
40秒前
42秒前
42秒前
43秒前
小二郎应助王武聪采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581069
求助须知:如何正确求助?哪些是违规求助? 3999072
关于积分的说明 12380572
捐赠科研通 3673592
什么是DOI,文献DOI怎么找? 2024656
邀请新用户注册赠送积分活动 1058541
科研通“疑难数据库(出版商)”最低求助积分说明 945240