Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers

结直肠癌 特征选择 机器学习 支持向量机 人工智能 癌症 医学 肿瘤科 生物信息学 计算机科学 内科学 生物
作者
Wei Wei,Yixue Li,Tao Huang
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:24 (13): 11133-11133 被引量:7
标识
DOI:10.3390/ijms241311133
摘要

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide, and the identification of biomarkers can improve early detection and personalized treatment. In this study, RNA-seq data and gene chip data from TCGA and GEO were used to explore potential biomarkers for CRC. The SMOTE method was used to address class imbalance, and four feature selection algorithms (MCFS, Borota, mRMR, and LightGBM) were used to select genes from the gene expression matrix. Four machine learning algorithms (SVM, XGBoost, RF, and kNN) were then employed to obtain the optimal number of genes for model construction. Through interpretable machine learning (IML), co-predictive networks were generated to identify rules and uncover underlying relationships among the selected genes. Survival analysis revealed that INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3 were significantly correlated with prognosis in CRC patients. In addition, the CIBERSORT algorithm was used to investigate the proportion of immune cells in CRC tissues, and gene mutation rates for the five selected biomarkers were explored. The biomarkers identified in this study have significant implications for the development of personalized therapies and could ultimately lead to improved clinical outcomes for CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈哈哈发布了新的文献求助10
1秒前
FAMILY发布了新的文献求助20
2秒前
肥肉叉烧完成签到,获得积分10
2秒前
2秒前
路旁小白发布了新的文献求助10
3秒前
3秒前
Xander发布了新的文献求助10
3秒前
柑橘完成签到,获得积分10
4秒前
友好白凡发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
9秒前
9秒前
感动的溪灵完成签到,获得积分20
10秒前
细心珠发布了新的文献求助10
10秒前
SYLH应助感动的溪灵采纳,获得10
14秒前
14秒前
细心蚂蚁发布了新的文献求助10
14秒前
友好白凡完成签到,获得积分10
16秒前
17秒前
HHR33完成签到,获得积分10
19秒前
19秒前
自由溪灵完成签到,获得积分10
20秒前
zxt12305313完成签到 ,获得积分10
21秒前
21秒前
搜集达人应助细心蚂蚁采纳,获得10
22秒前
hyx0320完成签到 ,获得积分10
22秒前
希望天下0贩的0应助zhou采纳,获得10
23秒前
24秒前
JIU夭完成签到,获得积分10
25秒前
领导范儿应助蜉蝣采纳,获得10
28秒前
Ava应助Sandro采纳,获得10
29秒前
30秒前
哇卡哇卡发布了新的文献求助10
31秒前
自觉冰之完成签到,获得积分10
33秒前
33秒前
科研通AI5应助朴实听云采纳,获得10
34秒前
眯眯眼的代容完成签到,获得积分10
35秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475635
求助须知:如何正确求助?哪些是违规求助? 3067483
关于积分的说明 9104253
捐赠科研通 2758983
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699843
科研通“疑难数据库(出版商)”最低求助积分说明 699197