Comparisons between temporal statistical metrics, time series stacks and phenological features derived from NASA Harmonized Landsat Sentinel-2 data for crop type mapping

时间序列 随机森林 计算机科学 遥感 土地覆盖 人工智能 机器学习 地理 工程类 土地利用 土木工程
作者
Xiaomi Liu,Shuai Xie,Jiangning Yang,Lin Sun,Liangyun Liu,Qing Zhang,Chenghai Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108015-108015 被引量:4
标识
DOI:10.1016/j.compag.2023.108015
摘要

Spectrotemporal features that capture changes in reflectance over time are useful for characterizing the land cover of highly dynamic crops. Currently, temporal statistical metrics, time series stacks and phenological features are the three spectrotemporal features commonly used in crop type mapping. The three types of features differ in their calculation methods and physical implications. However, there has been limited investigation on the performance comparisons between them for crop type mapping. The objective of this study was to evaluate and compare the effectiveness of the three features derived from Harmonized Landsat Sentinel-2 (HLS) data for crop type mapping. The HLS data were first pre-processed with cloud masking, temporal compositing and gap filling to create the gap-free time series for extracting the three spectrotemporal features. Crop reference data were obtained through a field survey conducted over a study area of 14.5 km by 8 km near College Station, Texas, USA. For the calibration of the Random Forest (RF) classification model with different sets of spectrotemporal features, 30% of the total reference data were used, and the remaining 70% were used for quantitative accuracy assessment. Results showed that although all three spectrotemporal features yielded accurate crop type maps, time series stacks performed better in crop classification with an overall accuracy (OA) of 96.62% and Kappa of 0.95, compared to temporal statistical metrics (OA of 92.19% and Kappa of 0.88) and phenological features (OA of 90.87% and Kappa of 0.86). In addition, time series stacks outperformed temporal statistical metrics and phenological features for all individual crop types mapped in terms of user’s accuracy, producer’s accuracy and F1-score. Moreover, the effects of temporal density, interval and depth on time series stacks were analyzed. The analysis suggested that the optimal crop mapping results for time series stacks were achieved using the monthly composites of the combined Landsat-8 and Sentinel-2 data from March to October. Supplementary experiments conducted in two additional areas confirmed the consistency of the results from this study, thereby demonstrating the scalability of the methods used. This research provides valuable insights into spectrotemporal feature selection and optimization for accurate crop type mapping. And finally, a new web-based application named “Crop Mapper” was developed with Google Earth Engine to facilitate the availability of crop type maps derived from monthly gap-free Landsat Sentinel-2 time series for the areas once the training samples were available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyani发布了新的文献求助10
1秒前
2秒前
Ava应助123采纳,获得10
2秒前
Unlisted完成签到,获得积分10
3秒前
斑驳发布了新的文献求助10
5秒前
ZJU发布了新的文献求助10
6秒前
丰富的澜完成签到 ,获得积分10
10秒前
ZJU完成签到,获得积分10
13秒前
黄诗淇完成签到 ,获得积分10
13秒前
Dorren完成签到,获得积分10
15秒前
十米完成签到 ,获得积分10
15秒前
16秒前
沉沉完成签到 ,获得积分0
16秒前
星期五应助科研通管家采纳,获得10
21秒前
Xiaoxiao应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
Orange应助科研通管家采纳,获得10
21秒前
Wind应助wwl采纳,获得10
23秒前
科研通AI2S应助单薄映易采纳,获得10
23秒前
25秒前
甜屁儿完成签到 ,获得积分10
25秒前
ECHO完成签到,获得积分10
26秒前
anz完成签到 ,获得积分10
26秒前
LIJIngcan完成签到 ,获得积分10
28秒前
黎黎原上草完成签到,获得积分10
30秒前
水云发布了新的文献求助10
31秒前
迷路绮南完成签到 ,获得积分10
32秒前
dingtao发布了新的文献求助80
33秒前
又又完成签到 ,获得积分10
34秒前
yinyin完成签到 ,获得积分10
36秒前
王旭东完成签到 ,获得积分10
37秒前
南风完成签到 ,获得积分10
37秒前
splemeth完成签到,获得积分10
38秒前
无私的电灯胆完成签到,获得积分10
41秒前
朱朱完成签到 ,获得积分10
41秒前
ll完成签到 ,获得积分10
41秒前
坚强的铅笔完成签到 ,获得积分10
42秒前
資鼒完成签到 ,获得积分10
43秒前
。。完成签到 ,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086