AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach

涡轮机 克里金 可靠性(半导体) 海洋工程 风力发电 可靠性工程 风速 工程类 计算机科学 结构工程 气象学 功率(物理) 机器学习 航空航天工程 物理 电气工程 量子力学
作者
Chao Ren,Yihan Xing
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:215: 118977-118977 被引量:5
标识
DOI:10.1016/j.renene.2023.118977
摘要

Lifetime fatigue damage prediction plays a key factor in wind turbine structure's reliability assessment. However, the damage estimation of wind turbines requires thousands of simulations and significant computational costs. To address this problem, this paper proposes an efficient active learning Kriging named AK-MDAmax for estimating the maximum fatigue damage of wind turbine towers with less computational cost. The proposed AK-MDAmax approach is based on the previous AK-DA approach. Kriging models are used to estimate the fatigue damage of wind turbine towers at different wind-wave conditions. An efficient active learning approach is developed to assess multi-location maximum cumulative fatigue damage. One 15MW Semi-submersible floating wind turbine model from the IEA project is used to demonstrate the efficiency of the proposed approach. Results indicate the proposed approach can efficiently and accurately estimate wind turbine towers' maximum cumulative fatigue damage. The AK-MDAmax approach requires less than 3% of the computational effort compared with the typical simulation approach, and the related absolute error is less than 1%. The AK-MDAmax approach could be useful for designers to optimize wind turbine structures and reduce design time and costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的蘑菇完成签到 ,获得积分10
2秒前
无私小小完成签到,获得积分10
4秒前
7秒前
8秒前
wxxz完成签到,获得积分10
9秒前
威武红酒完成签到 ,获得积分10
9秒前
双碳小王子完成签到,获得积分10
10秒前
www完成签到 ,获得积分10
10秒前
韭菜盒子发布了新的文献求助10
11秒前
SCI完成签到 ,获得积分10
13秒前
keyan完成签到 ,获得积分10
14秒前
格子完成签到,获得积分10
14秒前
hzl完成签到,获得积分10
14秒前
梅花易数完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
chenmeimei2012完成签到 ,获得积分10
17秒前
那时年少完成签到,获得积分10
19秒前
20秒前
feng完成签到,获得积分10
22秒前
24秒前
25秒前
woyaojiayou完成签到,获得积分10
26秒前
儒雅以云完成签到,获得积分10
27秒前
GreenT完成签到,获得积分10
28秒前
X519664508完成签到,获得积分0
28秒前
tangchao完成签到,获得积分10
29秒前
accepted发布了新的文献求助30
29秒前
雪寒完成签到,获得积分10
30秒前
石幻枫完成签到 ,获得积分0
31秒前
33秒前
amber完成签到 ,获得积分10
33秒前
Green完成签到,获得积分10
35秒前
牧青发布了新的文献求助10
36秒前
典雅葶完成签到 ,获得积分10
39秒前
40秒前
淡然以柳完成签到 ,获得积分10
41秒前
44秒前
44秒前
尊敬怀薇完成签到,获得积分10
45秒前
yy完成签到,获得积分10
45秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015