Redeem Myself: Purifying Backdoors in Deep Learning Models using Self Attention Distillation

后门 计算机科学 深度学习 人工智能 过程(计算) 机器学习 修剪 人工神经网络 脆弱性(计算) 计算机安全 农学 生物 操作系统
作者
Xueluan Gong,Yanjiao Chen,Yang Wang,Qian Wang,Yuzhe Gu,Huayang Huang,Chao Shen
标识
DOI:10.1109/sp46215.2023.10179375
摘要

Recent works have revealed the vulnerability of deep neural networks to backdoor attacks, where a backdoored model orchestrates targeted or untargeted misclassification when activated by a trigger. A line of purification methods (e.g., fine-pruning, neural attention transfer, MCR [69]) have been proposed to remove the backdoor in a model. However, they either fail to reduce the attack success rate of more advanced backdoor attacks or largely degrade the prediction capacity of the model for clean samples. In this paper, we put forward a new purification defense framework, dubbed SAGE, which utilizes self-attention distillation to purge models of backdoors. Unlike traditional attention transfer mechanisms that require a teacher model to supervise the distillation process, SAGE can realize self-purification with a small number of clean samples. To enhance the defense performance, we further propose a dynamic learning rate adjustment strategy that carefully tracks the prediction accuracy of clean samples to guide the learning rate adjustment. We compare the defense performance of SAGE with 6 state-of-the-art defense approaches against 8 backdoor attacks on 4 datasets. It is shown that SAGE can reduce the attack success rate by as much as 90% with less than 3% decrease in prediction accuracy for clean samples. We will open-source our codes upon publication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
从容迎夏发布了新的文献求助10
1秒前
13发布了新的文献求助10
1秒前
小帅完成签到,获得积分10
1秒前
kohu发布了新的文献求助30
2秒前
2秒前
天黑黑发布了新的文献求助10
2秒前
思源应助鲸鱼采纳,获得10
2秒前
2秒前
我是老大应助zyzy1996采纳,获得10
2秒前
3秒前
3秒前
bing完成签到 ,获得积分10
3秒前
3秒前
4秒前
yejian完成签到,获得积分10
4秒前
冷酷的天晴完成签到 ,获得积分10
4秒前
张亚宁完成签到,获得积分20
4秒前
吃不下发布了新的文献求助10
4秒前
4秒前
4秒前
大模型应助小宇宙ZKYYS采纳,获得10
5秒前
5秒前
5秒前
滚滚完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
582697438完成签到,获得积分20
7秒前
dudu发布了新的文献求助10
7秒前
可爱的函函应助小Q采纳,获得10
7秒前
xuening完成签到,获得积分10
8秒前
8秒前
开心听露发布了新的文献求助10
8秒前
情怀应助陈泽宇采纳,获得10
9秒前
哈哈发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526