Machine learning-based prediction of delirium 24 h after pediatric intensive care unit admission in critically ill children: A prospective cohort study

谵妄 医学 前瞻性队列研究 儿科重症监护室 队列 病危 接收机工作特性 重症监护室 急诊医学 队列研究 儿科 重症监护医学 内科学
作者
Lei Lei,Shuai Zhang,Lin Yang,Cheng Yang,Zhangqin Liu,Hao Xu,Shaoyu Su,Xingli Wan,Min Xu
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:146: 104565-104565 被引量:13
标识
DOI:10.1016/j.ijnurstu.2023.104565
摘要

Accurately identifying patients at high risk of delirium is vital for timely preventive intervention measures. Approaches for identifying the risk of developing delirium among critically ill children are not well researched.To develop and validate machine learning-based models for predicting delirium among critically ill children 24 h after pediatric intensive care unit (PICU) admission.A prospective cohort study.A large academic medical center with a 57-bed PICU in southwestern China from November 2019 to February 2022.One thousand five hundred and seventy-six critically ill children requiring PICU stay over 24 h.Five machine learning algorithms were employed. Delirium was screened by bedside nurses twice a day using the Cornell Assessment of Pediatric Delirium. Twenty-four clinical features from medical and nursing records during hospitalization were used to inform the models. Model performance was assessed according to numerous learning metrics, including the area under the receiver operating characteristic curve (AUC).Of the 1576 enrolled patients, 929 (58.9 %) were boys, and the age ranged from 28 days to 15 years with a median age of 12 months (IQR 3 to 60 months). Among them, 1126 patients were assigned to the training cohort, and 450 were assigned to the validation cohort. The AUCs ranged from 0.763 to 0.805 for the five models, among which the eXtreme Gradient Boosting (XGB) model performed best, achieving an AUC of 0.805 (95 % CI, 0.759-0.851), with 0.798 (95 % CI, 0.758-0.834) accuracy, 0.902 sensitivity, 0.839 positive predictive value, 0.640 F1-score and a Brier score of 0.144. Almost all models showed lower predictive performance in children younger than 24 months than in older children. The logistic regression model also performed well, with an AUC of 0.789 (95 % CI, 0.739, 0.838), just under that of the XGB model, and was subsequently transformed into a nomogram.Machine learning-based models can be established and potentially help identify critically ill children who are at high risk of delirium 24 h after PICU admission. The nomogram may be a beneficial management tool for delirium for PICU practitioners at present.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助电闪采纳,获得10
刚刚
天赐殊荣发布了新的文献求助10
1秒前
1秒前
圆锥香蕉完成签到,获得积分10
1秒前
贿猫发布了新的文献求助10
2秒前
JLAlpaca发布了新的文献求助10
3秒前
慕青应助strings采纳,获得10
3秒前
马尼拉发布了新的文献求助10
4秒前
安河桥发布了新的文献求助10
4秒前
4秒前
WSQ2130发布了新的文献求助10
5秒前
仁爱太阳完成签到,获得积分10
5秒前
汉堡包应助摸鱼采纳,获得10
5秒前
英俊的铭应助天赐殊荣采纳,获得10
6秒前
芒琪发布了新的文献求助10
6秒前
6秒前
义气的行天完成签到,获得积分10
6秒前
7ohnny应助我能写出东西采纳,获得30
6秒前
太阳当下完成签到,获得积分10
6秒前
二皮脸完成签到,获得积分10
7秒前
celinewu完成签到,获得积分10
8秒前
大聪明完成签到,获得积分10
8秒前
小成完成签到 ,获得积分10
8秒前
郭n完成签到 ,获得积分10
9秒前
9秒前
阔达宝莹发布了新的文献求助10
10秒前
10秒前
南柯一梦完成签到 ,获得积分10
10秒前
Cc发布了新的文献求助10
10秒前
汤圆爱吃芝麻完成签到,获得积分10
11秒前
曹馨月发布了新的文献求助10
11秒前
张立佳完成签到 ,获得积分10
12秒前
12秒前
HHHHH完成签到,获得积分10
13秒前
plant发布了新的文献求助10
13秒前
安河桥完成签到,获得积分10
13秒前
13秒前
13秒前
小周完成签到,获得积分20
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271