Fermi-level shift, electron separation, and plasmon resonance change in Ag nanoparticle-decorated TiO2 under UV light illumination

表面等离子共振 纳米颗粒 材料科学 光催化 X射线光电子能谱 费米能级 等离子体子 电子 蓝移 光化学 纳米技术 分析化学(期刊) 化学物理 化学 化学工程 光电子学 催化作用 光致发光 物理 工程类 量子力学 生物化学 色谱法
作者
Wenhao Zhao,Liping Wen,Ivan P. Parkin,Xiujian Zhao,Baoshun Liu
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (29): 20134-20144 被引量:2
标识
DOI:10.1039/d3cp00899a
摘要

Noble metal nanoparticles are widely used as co-catalysts for storing and separating electrons in semiconductor photocatalysis. Thus, evaluating this ability is important and meaningful to understand the photocatalytic mechanism. Employing Ag nanoparticles, the present study combined in situ photoconductance and theoretical analysis to evaluate the Fermi-level (EF) shift in a UV-illuminated Ag/TiO2 system under gaseous conditions. Based on this, the role of the Ag nanoparticles in storing and separating electrons was discussed. It was found that the EF of Ag/TiO2 is located deeper in the gap and a variation in temperature has less effect on the EF of Ag/TiO2 compared to the undecorated TiO2. The analysis showed that ∼46 electrons can be stored in 10 nm Ag nanoparticles under our experimental conditions, which does not change with temperature. The electron traps in TiO2 can affect the electron distribution in the TiO2 and Ag nanoparticles. It was observed that the localized surface plasmon resonance (LSPR) of the Ag nanoparticles exhibited a blue-shift under UV light illumination, which is generally ascribed to the electron storage in the Ag nanoparticles. However, we showed that the blue-shift is not related to the electron storage in the Ag nanoparticles, and thus it cannot be used as an indicator for evaluating their electron-storage ability. The in situ XPS analysis also does not support that the LSPR blue shift is associated with the reduction in the Ag2O layer and TiO2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
hyd1640发布了新的文献求助200
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
受伤书文完成签到,获得积分10
3秒前
3秒前
lm0703完成签到,获得积分10
3秒前
zhy发布了新的文献求助10
3秒前
orixero应助哼哼采纳,获得10
4秒前
庾储发布了新的文献求助10
4秒前
4秒前
4秒前
zhy发布了新的文献求助10
4秒前
4秒前
4秒前
蓝兰完成签到,获得积分10
5秒前
5秒前
5秒前
小桑桑完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
可乐啊啊啊完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
星星点灯发布了新的文献求助10
8秒前
9秒前
zhy发布了新的文献求助10
9秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082258
求助须知:如何正确求助?哪些是违规求助? 2735476
关于积分的说明 7537620
捐赠科研通 2385156
什么是DOI,文献DOI怎么找? 1264678
科研通“疑难数据库(出版商)”最低求助积分说明 612700
版权声明 597623