已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Few-shot incremental learning in the context of solar cell quality inspection

计算机科学 分割 人工智能 背景(考古学) 人工神经网络 网络体系结构 机器学习 模式识别(心理学) 深度学习 质量(理念) 数据挖掘 古生物学 哲学 计算机安全 生物 认识论
作者
Julen Balzategui,Luka Eciolaza
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:228: 120382-120382
标识
DOI:10.1016/j.eswa.2023.120382
摘要

Deep Neural Networks have shown high defect detection rates in industrial setups, surpassing other more traditional manual feature engineering-based proposals. This has been mainly achieved through supervised training, where a great number of annotated samples are required to learn good classification models. However, obtaining such a large amount of data is sometimes challenging in industrial scenarios, as defective samples do not occur regularly, and certain types of defects only appear occasionally. In this work, we explore the technique of weight imprinting in the context of solar cell quality inspection. This technique allows to incorporate new classes into the classification network using just a few samples. We tested the technique by first training a base network for the segmentation of three base defect classes and then sequentially incorporating two additional defect classes. This resulted in a network capable of segmenting five different defect classes. We also experimented with the network architecture, resulting in more precise segmentation and defect detection results. The experiments’ results have shown that this technique allows the network to extend its capabilities regarding the detection of new defect classes using just a few samples, which can be interesting for industrial practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的如松完成签到,获得积分10
刚刚
晓兴兴完成签到,获得积分10
1秒前
ezekiel发布了新的文献求助30
2秒前
ZQ完成签到,获得积分10
3秒前
每文完成签到,获得积分10
5秒前
wmmm发布了新的文献求助10
5秒前
斯文败类应助辣椒采纳,获得10
7秒前
zpp发布了新的文献求助10
8秒前
英姑应助夏夏周采纳,获得10
8秒前
潇洒的浩然完成签到,获得积分10
9秒前
金梦丽完成签到,获得积分10
9秒前
ZZQ完成签到,获得积分10
11秒前
Akim应助彩色宛筠采纳,获得10
12秒前
Akim应助ZZZ采纳,获得10
13秒前
ED应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
MchemG应助科研通管家采纳,获得10
17秒前
善学以致用应助木cheng采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
17秒前
ED应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
传奇3应助跳跃火车采纳,获得10
17秒前
从容芮举报苗条妙旋求助涉嫌违规
20秒前
西瓜撞地球完成签到 ,获得积分20
21秒前
ding应助duoduo采纳,获得10
21秒前
英姑应助xdc采纳,获得10
21秒前
23秒前
粗暴的遥完成签到,获得积分10
24秒前
25秒前
25秒前
领导范儿应助yongjie20031121采纳,获得10
26秒前
28秒前
彩色宛筠发布了新的文献求助10
28秒前
28秒前
西瓜撞地球关注了科研通微信公众号
29秒前
木木应助程栀采纳,获得10
29秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994300
求助须知:如何正确求助?哪些是违规求助? 3534729
关于积分的说明 11266406
捐赠科研通 3274658
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883283
科研通“疑难数据库(出版商)”最低求助积分说明 809731