胶质瘤
核医学
医学
酰胺
内科学
化学
癌症研究
生物化学
作者
Yibing Chen,Benqi Zhao,Changhao Zhu,Chongxue Bie,Xiaowei He,Zhuozhao Zheng,Xiaolei Song
标识
DOI:10.1016/j.mri.2023.07.003
摘要
In diffuse glioma patients, Lys-27-Met mutations in histone 3 genes (H3K27M) are associated with an aggravated prognosis and further decreased overall survival. By using frequency importance analysis on chemical exchange saturation transfer (CEST) MRI, this study aimed to assess the predictability of the H3K27M status in diffuse glioma patients. Twenty-two patients diagnosed with diffuse glioma, with a known H3K27M status, were included in the present study. All patients underwent CEST MRI scans. The previously proposed frequency importance analysis was performed to determine the relative contribution of the amide and aliphatic protons for the differentiation between normal tissues and tumors. For this comparison, the conventional MTRasym analysis of amide protons at 3.5 ppm, i.e., the amide proton transfer-weighted (APTw) signal, was employed. Statistical analysis was performed using the Mann-Whitney U test, and the receiver operating characteristic (ROC) and area under the curve (AUC) analyses. The mean and 90th percentile of the ΔAPTw intensities, amide and aliphatic frequency importance values revealed statistically significant differences between the wildtype and the H3K27M-altered patient groups (p < 0.05). For the prediction of the H3K27M status, amide frequency importance achieved highest AUCs of 0.97, with a specificity of 0.93. In contrast, the ΔAPTw intensities and aliphatic frequency importance showed relatively lower AUCs (<0.35) in predicting the H3K27M status. Amide frequency importance exhibited satisfactory performance in the prediction of the H3K27M status. As such, it may be considered as a non-invasive MRI biomarker for the diagnosis of diffuse gliomas.
科研通智能强力驱动
Strongly Powered by AbleSci AI