亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SBD-K-medoids-based long-term settlement analysis of shield tunnel

结算(财务) 护盾 聚类分析 期限(时间) 隧道施工 工程类 章节(排版) 土木工程 岩土工程 计算机科学 地质学 人工智能 岩石学 物理 量子力学 万维网 付款 操作系统
作者
Ye Shen,Dongmei Zhang,Rulu Wang,Jiaping Li,Zhongkai Huang
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:42: 101053-101053 被引量:27
标识
DOI:10.1016/j.trgeo.2023.101053
摘要

Long-term settlement is essential to operational tunnel safety. In this study, a systematic method for analysing shield tunnel settlement during the operation period is proposed. First, a new time-series clustering algorithm, namely shape-based distance (SBD)-K-medoids, is proposed to mitigate the limitation of low efficiency. The clustering precision and efficiency of the new algorithm were validated through hypothesis testing. Subsequently, the long-term settlement analysis framework is illustrated in detail, consisting of four parts: data pre-processing, section division and settlement characterisation, similarity clustering, and attribution analysis. A new index, called the incremental tunnel settlement state (ITSS), is proposed to depict a shield tunnel's long-term longitudinal settlement during the operation period. Finally, a case study of the Shanghai Metro Line 10 (ML10) was conducted to validate the method. The results indicate that the uplink of ML10 is divided into four clusters, which correspond exactly to four situations a shield tunnel section undergoes during operation. Through an attribution analysis, the formation conditions of each cluster are summarised. Corresponding settlement patterns are concluded and engineering countermeasures are proposed for rehabilition. In general, this case exemplifies the rationality and engineering practice value of the study's approach, and the systematic method offers a new approach for analysing the long-term settlement of shield tunnels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
11秒前
21秒前
微卫星不稳定完成签到 ,获得积分0
23秒前
30秒前
浮游应助李大伟采纳,获得10
35秒前
43秒前
李大伟完成签到,获得积分10
51秒前
51秒前
平常以云完成签到 ,获得积分10
53秒前
悠树里完成签到,获得积分10
57秒前
无奈寒梦发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
hEbuy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
汉堡包应助Developing_human采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
暴躁的奇异果完成签到,获得积分10
4分钟前
4分钟前
领导范儿应助Ming采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491