SBD-K-medoids-based long-term settlement analysis of shield tunnel

结算(财务) 护盾 聚类分析 期限(时间) 隧道施工 工程类 章节(排版) 土木工程 岩土工程 计算机科学 地质学 人工智能 岩石学 物理 量子力学 万维网 付款 操作系统
作者
Ye Shen,Dongmei Zhang,Rulu Wang,Jiaping Li,Zhongkai Huang
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:42: 101053-101053 被引量:27
标识
DOI:10.1016/j.trgeo.2023.101053
摘要

Long-term settlement is essential to operational tunnel safety. In this study, a systematic method for analysing shield tunnel settlement during the operation period is proposed. First, a new time-series clustering algorithm, namely shape-based distance (SBD)-K-medoids, is proposed to mitigate the limitation of low efficiency. The clustering precision and efficiency of the new algorithm were validated through hypothesis testing. Subsequently, the long-term settlement analysis framework is illustrated in detail, consisting of four parts: data pre-processing, section division and settlement characterisation, similarity clustering, and attribution analysis. A new index, called the incremental tunnel settlement state (ITSS), is proposed to depict a shield tunnel's long-term longitudinal settlement during the operation period. Finally, a case study of the Shanghai Metro Line 10 (ML10) was conducted to validate the method. The results indicate that the uplink of ML10 is divided into four clusters, which correspond exactly to four situations a shield tunnel section undergoes during operation. Through an attribution analysis, the formation conditions of each cluster are summarised. Corresponding settlement patterns are concluded and engineering countermeasures are proposed for rehabilition. In general, this case exemplifies the rationality and engineering practice value of the study's approach, and the systematic method offers a new approach for analysing the long-term settlement of shield tunnels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Zo采纳,获得10
刚刚
present发布了新的文献求助10
刚刚
wonder完成签到 ,获得积分10
1秒前
2秒前
NexusExplorer应助寒冷乐驹采纳,获得10
2秒前
3秒前
3秒前
Jenny发布了新的文献求助10
3秒前
Jiayi完成签到,获得积分10
3秒前
谨慎的凝丝完成签到,获得积分10
4秒前
管恩杰发布了新的文献求助10
4秒前
Jasper应助AlanLi采纳,获得10
4秒前
听风完成签到 ,获得积分10
4秒前
tennisgirl完成签到 ,获得积分10
4秒前
谭访冬发布了新的文献求助30
5秒前
RenJG完成签到,获得积分10
6秒前
Lucas应助爱lx采纳,获得10
6秒前
6秒前
小王同学完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
bcsunny2022发布了新的文献求助10
8秒前
热心乌完成签到,获得积分10
8秒前
DOUDOU发布了新的文献求助10
8秒前
8秒前
present完成签到,获得积分20
8秒前
wanci应助huan采纳,获得10
9秒前
曲曲完成签到,获得积分10
9秒前
9秒前
等待日记本完成签到 ,获得积分10
9秒前
zfh发布了新的文献求助10
9秒前
旺旺完成签到,获得积分20
10秒前
聪明山芙完成签到,获得积分10
10秒前
石石石发布了新的文献求助10
10秒前
乐乐应助小高采纳,获得30
11秒前
vassallo完成签到 ,获得积分10
11秒前
炒鸡大蘑菇完成签到,获得积分10
11秒前
ZC发布了新的文献求助10
12秒前
xm完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3078453
求助须知:如何正确求助?哪些是违规求助? 2731120
关于积分的说明 7517197
捐赠科研通 2379609
什么是DOI,文献DOI怎么找? 1261760
科研通“疑难数据库(出版商)”最低求助积分说明 611719
版权声明 597349