已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation

计算机科学 二部图 图形 情报检索 人工智能 人气 一致性(知识库) 自然语言处理 理论计算机科学 心理学 社会心理学
作者
Junliang Yu,Xin Xia,Tong Chen,Lizhen Cui,Quoc Viet Hung Nguyen,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:152
标识
DOI:10.1109/tkde.2023.3288135
摘要

Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The underlying principle of CL-based recommendation models is to ensure the consistency between representations derived from different graph augmentations of the user-item bipartite graph. This self-supervised approach allows for the extraction of general features from raw data, thereby mitigating the issue of data sparsity. Despite the effectiveness of this paradigm, the factors contributing to its performance gains have yet to be fully understood. This paper provides novel insights into the impact of CL on recommendation. Our findings indicate that CL enables the model to learn more evenly distributed user and item representations, which alleviates the prevalent popularity bias and promoting long-tail items. Our analysis also suggests that the graph augmentations, previously considered essential, are relatively unreliable and of limited significance in CL-based recommendation. Based on these findings, we put forward an e X tremely Sim ple G raph C ontrastive L earning method ( XSimGCL ) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to generate views for CL. A comprehensive experimental study on four large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/Coder-Yu/SELFRec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狗狗耳完成签到 ,获得积分10
刚刚
孤独蘑菇完成签到 ,获得积分10
刚刚
刚刚
lalalal完成签到,获得积分20
1秒前
佳佳完成签到,获得积分10
2秒前
李程阳完成签到 ,获得积分10
3秒前
Echo发布了新的文献求助10
4秒前
6秒前
黑米粥发布了新的文献求助10
6秒前
林lulu完成签到 ,获得积分10
7秒前
钰L发布了新的文献求助10
7秒前
张明完成签到 ,获得积分10
8秒前
Jason完成签到 ,获得积分10
8秒前
ll完成签到,获得积分10
9秒前
怕孤单的土豆完成签到,获得积分10
9秒前
卿霜完成签到 ,获得积分10
10秒前
流沙无言完成签到 ,获得积分10
11秒前
叮当完成签到 ,获得积分10
11秒前
情怀应助lalalal采纳,获得10
11秒前
静翕完成签到 ,获得积分10
11秒前
GingerF应助酷酷的冬灵采纳,获得50
12秒前
13秒前
vida完成签到 ,获得积分10
14秒前
忆茶戏完成签到 ,获得积分10
15秒前
黄景滨完成签到 ,获得积分10
15秒前
15秒前
QG完成签到,获得积分10
16秒前
于雷是我发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
monster完成签到 ,获得积分10
17秒前
Survivor完成签到,获得积分10
17秒前
1531811发布了新的文献求助10
18秒前
ccshi完成签到,获得积分10
18秒前
大方听白完成签到 ,获得积分10
19秒前
19秒前
msn00完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502