XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation

计算机科学 二部图 图形 情报检索 人工智能 人气 一致性(知识库) 自然语言处理 理论计算机科学 心理学 社会心理学
作者
Junliang Yu,Xin Xia,Tong Chen,Lizhen Cui,Quoc Viet Hung Nguyen,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tkde.2023.3288135
摘要

Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The underlying principle of CL-based recommendation models is to ensure the consistency between representations derived from different graph augmentations of the user-item bipartite graph. This self-supervised approach allows for the extraction of general features from raw data, thereby mitigating the issue of data sparsity. Despite the effectiveness of this paradigm, the factors contributing to its performance gains have yet to be fully understood. This paper provides novel insights into the impact of CL on recommendation. Our findings indicate that CL enables the model to learn more evenly distributed user and item representations, which alleviates the prevalent popularity bias and promoting long-tail items. Our analysis also suggests that the graph augmentations, previously considered essential, are relatively unreliable and of limited significance in CL-based recommendation. Based on these findings, we put forward an e X tremely Sim ple G raph C ontrastive L earning method ( XSimGCL ) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to generate views for CL. A comprehensive experimental study on four large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/Coder-Yu/SELFRec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桔子完成签到,获得积分10
3秒前
二般人完成签到 ,获得积分10
8秒前
忐忑的阑香完成签到,获得积分10
9秒前
9秒前
罗晓倩完成签到,获得积分10
9秒前
ShiyuZuo完成签到,获得积分10
10秒前
诚心千筹发布了新的文献求助10
13秒前
13秒前
YamDaamCaa应助shawn采纳,获得100
16秒前
桃子完成签到,获得积分20
16秒前
Rondab应助大观天下采纳,获得30
17秒前
DijiaXu应助爱科研采纳,获得10
20秒前
水中鱼完成签到,获得积分10
20秒前
共享精神应助无情的匪采纳,获得10
20秒前
科目三应助yoyo采纳,获得10
20秒前
21秒前
前隆是狗完成签到,获得积分10
21秒前
yyyyyyy111发布了新的文献求助10
24秒前
SYLH应助淅淅12345采纳,获得10
25秒前
27秒前
YWang发布了新的文献求助10
28秒前
李健的小迷弟应助hh采纳,获得10
29秒前
31秒前
Orange应助莉丽采纳,获得10
31秒前
32秒前
juwish完成签到,获得积分10
33秒前
cst发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
33秒前
Fengliguantou发布了新的文献求助10
34秒前
34秒前
脑洞疼应助zriverm采纳,获得10
35秒前
林宝雯发布了新的文献求助10
36秒前
cccyq完成签到,获得积分10
37秒前
38秒前
诚心千筹完成签到,获得积分10
39秒前
40秒前
pppp完成签到,获得积分10
41秒前
42秒前
情怀应助YWang采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073