XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation

计算机科学 二部图 图形 情报检索 人工智能 人气 一致性(知识库) 自然语言处理 理论计算机科学 心理学 社会心理学
作者
Junliang Yu,Xin Xia,Tong Chen,Lizhen Cui,Quoc Viet Hung Nguyen,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:10
标识
DOI:10.1109/tkde.2023.3288135
摘要

Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The underlying principle of CL-based recommendation models is to ensure the consistency between representations derived from different graph augmentations of the user-item bipartite graph. This self-supervised approach allows for the extraction of general features from raw data, thereby mitigating the issue of data sparsity. Despite the effectiveness of this paradigm, the factors contributing to its performance gains have yet to be fully understood. This paper provides novel insights into the impact of CL on recommendation. Our findings indicate that CL enables the model to learn more evenly distributed user and item representations, which alleviates the prevalent popularity bias and promoting long-tail items. Our analysis also suggests that the graph augmentations, previously considered essential, are relatively unreliable and of limited significance in CL-based recommendation. Based on these findings, we put forward an e X tremely Sim ple G raph C ontrastive L earning method ( XSimGCL ) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to generate views for CL. A comprehensive experimental study on four large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/Coder-Yu/SELFRec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx发布了新的文献求助10
刚刚
眼睛大雨筠应助小白采纳,获得20
1秒前
1秒前
1秒前
2秒前
英俊的铭应助gaopeng采纳,获得10
3秒前
3秒前
3秒前
Emma完成签到 ,获得积分10
4秒前
wanci应助9way采纳,获得10
4秒前
4秒前
5秒前
Hoooo...发布了新的文献求助10
5秒前
Jasper应助Arya采纳,获得10
5秒前
小王Zzzz关注了科研通微信公众号
5秒前
6秒前
rrrrrrry发布了新的文献求助10
6秒前
6秒前
Lucas应助NINI采纳,获得10
6秒前
youxiaotong发布了新的文献求助30
7秒前
7秒前
makabaka完成签到,获得积分20
8秒前
思源应助Hoooo...采纳,获得10
9秒前
wjx发布了新的文献求助10
10秒前
10秒前
李爱国应助波子采纳,获得10
10秒前
10秒前
木木发布了新的文献求助10
10秒前
dgzsbldtm完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
苗条的寒珊完成签到,获得积分20
12秒前
发发发完成签到,获得积分10
12秒前
致尚发布了新的文献求助20
12秒前
橙子发布了新的文献求助10
12秒前
12秒前
我是老大应助卫元灵采纳,获得10
13秒前
SciGPT应助永夜的极光20采纳,获得10
14秒前
ZZH发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648