XSimGCL: Towards Extremely Simple Graph Contrastive Learning for Recommendation

计算机科学 二部图 图形 情报检索 人工智能 人气 一致性(知识库) 自然语言处理 理论计算机科学 心理学 社会心理学
作者
Junliang Yu,Xin Xia,Tong Chen,Lizhen Cui,Quoc Viet Hung Nguyen,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:152
标识
DOI:10.1109/tkde.2023.3288135
摘要

Contrastive learning (CL) has recently been demonstrated critical in improving recommendation performance. The underlying principle of CL-based recommendation models is to ensure the consistency between representations derived from different graph augmentations of the user-item bipartite graph. This self-supervised approach allows for the extraction of general features from raw data, thereby mitigating the issue of data sparsity. Despite the effectiveness of this paradigm, the factors contributing to its performance gains have yet to be fully understood. This paper provides novel insights into the impact of CL on recommendation. Our findings indicate that CL enables the model to learn more evenly distributed user and item representations, which alleviates the prevalent popularity bias and promoting long-tail items. Our analysis also suggests that the graph augmentations, previously considered essential, are relatively unreliable and of limited significance in CL-based recommendation. Based on these findings, we put forward an e X tremely Sim ple G raph C ontrastive L earning method ( XSimGCL ) for recommendation, which discards the ineffective graph augmentations and instead employs a simple yet effective noise-based embedding augmentation to generate views for CL. A comprehensive experimental study on four large and highly sparse benchmark datasets demonstrates that, though the proposed method is extremely simple, it can smoothly adjust the uniformity of learned representations and outperforms its graph augmentation-based counterparts by a large margin in both recommendation accuracy and training efficiency. The code and used datasets are released at https://github.com/Coder-Yu/SELFRec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助milkmore采纳,获得30
刚刚
彭于晏应助锂氧采纳,获得10
刚刚
小二郎应助AN采纳,获得10
1秒前
清秀迎松应助谷谷采纳,获得10
1秒前
cchen完成签到 ,获得积分10
1秒前
无私秋珊应助西门百招采纳,获得10
2秒前
沧海一兰完成签到,获得积分10
3秒前
浮游应助橘子采纳,获得10
3秒前
猫猫爱吃煎饼完成签到 ,获得积分10
3秒前
Orange应助咕噜咕噜采纳,获得10
4秒前
6秒前
rk发布了新的文献求助12
6秒前
7秒前
杨金城完成签到,获得积分10
7秒前
田园完成签到,获得积分10
7秒前
小蘑菇应助无限小松鼠采纳,获得10
7秒前
科研通AI6应助万慧采纳,获得100
8秒前
9秒前
狗尾巴草发布了新的文献求助10
10秒前
金毛上将完成签到,获得积分10
10秒前
11秒前
谷谷完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
充电宝应助Leah采纳,获得10
12秒前
爱吃姜的面条完成签到,获得积分10
13秒前
domingo发布了新的文献求助30
13秒前
沉默的靖儿完成签到 ,获得积分10
14秒前
wanci应助快乐小狗采纳,获得10
15秒前
卡卡光波完成签到,获得积分10
15秒前
虚心的老头完成签到,获得积分10
15秒前
Ava应助Orange采纳,获得10
15秒前
玄音完成签到,获得积分10
16秒前
zzw完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503