Development of machine learning models for patients in the high intrahepatic cholangiocarcinoma incidence age group

医学 布里氏评分 队列 入射(几何) 肝内胆管癌 接收机工作特性 随机森林 流行病学 生存分析 队列研究 机器学习 人工智能 内科学 肿瘤科 计算机科学 物理 光学
作者
Jie Shen,Dashuai Yang,Yu Zhou,Jun‐Peng Pei,Zhongkai Wu,Xin Wang,Kailiang Zhao,Youming Ding
出处
期刊:BMC Geriatrics [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12877-024-05154-3
摘要

Abstract Background Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis and is understudied. Based on the clinical features of patients with ICC, we constructed machine learning models to understand their importance on survival and to accurately determine patient prognosis, aiming to develop reference values to guide physicians in developing more effective treatment plans. Methods This study used machine learning (ML) algorithms to build prediction models using ICC data on 1,751 patients from the SEER (Surveillance, Epidemiology, and End Results) database and 58 hospital cases. The models’ performances were compared using receiver operating characteristic curve analysis, C-index, and Brier scores. Results A total of eight variables were used to construct the ML models. Our analysis identified the random survival forest model as the best for prognostic prediction. In the training cohort, its C-index, Brier score, and Area Under the Curve values were 0.76, 0.124, and 0.882, respectively, and it also performed well in the test cohort. Kaplan–Meier survival analysis revealed that the model could effectively determine patient prognosis. Conclusions To our knowledge, this is the first study to develop ML prognostic models for ICC in the high-incidence age group. Of the ML models, the random survival forest model was best at prognosis prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助勾勾1991采纳,获得10
1秒前
研友_VZG7GZ应助勾勾1991采纳,获得20
1秒前
充电宝应助勾勾1991采纳,获得20
1秒前
1秒前
Lucas应助勾勾1991采纳,获得10
1秒前
汉堡包应助jerry采纳,获得10
1秒前
习习应助changmengying采纳,获得10
2秒前
2秒前
高贵花瓣完成签到,获得积分10
2秒前
161319141完成签到 ,获得积分10
2秒前
丰富的世界完成签到 ,获得积分10
2秒前
高兴英完成签到,获得积分10
2秒前
美好嘉熙完成签到,获得积分10
2秒前
3秒前
清浅发布了新的文献求助10
3秒前
无辜的傲安完成签到 ,获得积分10
3秒前
Jinji发布了新的文献求助200
3秒前
萍子完成签到,获得积分10
3秒前
Ll发布了新的文献求助10
3秒前
3秒前
dracovu完成签到,获得积分10
4秒前
ZTT发布了新的文献求助10
4秒前
5秒前
cocobear完成签到 ,获得积分10
5秒前
啤酒半斤完成签到,获得积分10
5秒前
Hey发布了新的文献求助10
5秒前
6秒前
牧云完成签到 ,获得积分10
6秒前
7秒前
7秒前
小二郎应助xhy采纳,获得10
7秒前
zhonghbush发布了新的文献求助10
7秒前
萍子发布了新的文献求助10
7秒前
lovesonic完成签到,获得积分10
7秒前
科研通AI5应助tyty采纳,获得10
7秒前
Orange应助路之遥兮采纳,获得10
7秒前
完美世界应助123采纳,获得30
8秒前
充电宝应助zengli采纳,获得10
8秒前
LiDaYang完成签到,获得积分10
8秒前
努力学习发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672