亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving milling tool wear prediction through a hybrid NCA-SMA-GRU deep learning model

形状记忆合金* 计算机科学 深度学习 人工智能 机器学习 算法
作者
Zhongyuan Che,Chong Peng,T. Warren Liao,Jikun Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124556-124556 被引量:15
标识
DOI:10.1016/j.eswa.2024.124556
摘要

Milling tool wear, a ubiquitous challenge in industrial automation and manufacturing, leads to diminished equipment utilization, escalating costs, and a decline in product quality. The prediction of tool wear is a complex and challenging task, as it involves numerous variables. This paper introduces a pioneering hybrid approach, the NCA-SMA-GRU model. It involves the hybridization of three major components and is designed to enhance the precision and expedite the process of tool wear prediction. The NCA component is adept at filtering and retaining the most relevant features associated with milling tool wear from the raw signals, and it also improves the model's interpretability. Subsequently, SMA optimizes the GRU network's hyperparameters, including the initial learning rate, hidden layer neurons, network training iterations, and the L2 regularization factor, to identify an optimal combination that bolsters predictive performance. The modeling steps and the development of fitness function are explained in detail. The model's efficacy is rigorously evaluated using data from the 2010 High Speed CNC Machine Tool Health Prediction Contest (PHM 2010), which encompasses wear data from both single and multiple cutters. The performance is compared using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2), and computational time. To assess the ability and characteristics of the proposed approach, other popular hybrid models are constructed for comparative analysis. The results demonstrate that the proposed model addresses the limitations of traditional prediction methods and provides insights into the development of deep learning and optimization algorithms for tool wear prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
普通用户30号完成签到 ,获得积分10
15秒前
kkkiku发布了新的文献求助30
17秒前
zhuxd完成签到 ,获得积分10
59秒前
临子完成签到,获得积分10
1分钟前
阿兹卡班完成签到 ,获得积分10
1分钟前
Jasper应助白华苍松采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
鱿鱼起司发布了新的文献求助10
2分钟前
合适的代秋完成签到 ,获得积分10
2分钟前
Orange应助热情奇异果采纳,获得10
2分钟前
Timelapse应助yishan采纳,获得10
2分钟前
2分钟前
3分钟前
涛1完成签到 ,获得积分10
4分钟前
5分钟前
缥缈月光完成签到 ,获得积分10
6分钟前
温不胜的破木吉他完成签到 ,获得积分10
6分钟前
souther完成签到,获得积分0
6分钟前
英俊的铭应助yishan采纳,获得10
6分钟前
6分钟前
安平完成签到,获得积分10
7分钟前
7分钟前
聪慧的凝海完成签到 ,获得积分10
7分钟前
Kate发布了新的文献求助10
7分钟前
小超人完成签到 ,获得积分10
7分钟前
8分钟前
orixero应助Ni采纳,获得10
8分钟前
8分钟前
Ni发布了新的文献求助10
8分钟前
赵一完成签到 ,获得积分10
8分钟前
一次完成签到,获得积分10
8分钟前
8分钟前
一次发布了新的文献求助10
8分钟前
9分钟前
9分钟前
9分钟前
9分钟前
yishan发布了新的文献求助10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564990
求助须知:如何正确求助?哪些是违规求助? 4649719
关于积分的说明 14689286
捐赠科研通 4591666
什么是DOI,文献DOI怎么找? 2519330
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1463006