Improving milling tool wear prediction through a hybrid NCA-SMA-GRU deep learning model

形状记忆合金* 计算机科学 深度学习 人工智能 机器学习 算法
作者
Zhongyuan Che,Chong Peng,T. Warren Liao,Jikun Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124556-124556 被引量:15
标识
DOI:10.1016/j.eswa.2024.124556
摘要

Milling tool wear, a ubiquitous challenge in industrial automation and manufacturing, leads to diminished equipment utilization, escalating costs, and a decline in product quality. The prediction of tool wear is a complex and challenging task, as it involves numerous variables. This paper introduces a pioneering hybrid approach, the NCA-SMA-GRU model. It involves the hybridization of three major components and is designed to enhance the precision and expedite the process of tool wear prediction. The NCA component is adept at filtering and retaining the most relevant features associated with milling tool wear from the raw signals, and it also improves the model's interpretability. Subsequently, SMA optimizes the GRU network's hyperparameters, including the initial learning rate, hidden layer neurons, network training iterations, and the L2 regularization factor, to identify an optimal combination that bolsters predictive performance. The modeling steps and the development of fitness function are explained in detail. The model's efficacy is rigorously evaluated using data from the 2010 High Speed CNC Machine Tool Health Prediction Contest (PHM 2010), which encompasses wear data from both single and multiple cutters. The performance is compared using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2), and computational time. To assess the ability and characteristics of the proposed approach, other popular hybrid models are constructed for comparative analysis. The results demonstrate that the proposed model addresses the limitations of traditional prediction methods and provides insights into the development of deep learning and optimization algorithms for tool wear prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气忆南发布了新的文献求助10
刚刚
WZQ完成签到,获得积分10
1秒前
钟露完成签到 ,获得积分10
1秒前
2秒前
无语发布了新的文献求助30
2秒前
小柚子完成签到,获得积分10
2秒前
Dore发布了新的文献求助30
2秒前
奋斗的奇迹完成签到,获得积分10
2秒前
3秒前
向峻熙完成签到,获得积分10
3秒前
淡然沛凝发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
田様应助Urusaiina采纳,获得10
4秒前
5秒前
星辰大海应助发文章12138采纳,获得10
5秒前
小乌龟完成签到 ,获得积分10
5秒前
当当发布了新的文献求助10
5秒前
华仔应助一粟的粉r采纳,获得10
6秒前
bfr完成签到,获得积分10
6秒前
周晓发布了新的文献求助10
6秒前
starry完成签到,获得积分10
7秒前
8秒前
玄颂完成签到,获得积分10
8秒前
8秒前
一味地丶逞强完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
学术瞎子发布了新的文献求助10
9秒前
Michael.Hu完成签到,获得积分10
9秒前
Sissi发布了新的文献求助10
10秒前
10秒前
zcseed完成签到,获得积分20
10秒前
ding应助无语采纳,获得10
10秒前
11秒前
CipherSage应助超级柜子采纳,获得10
11秒前
CodeCraft应助qiyumeng采纳,获得10
12秒前
紧张的斩完成签到 ,获得积分10
12秒前
科研通AI5应助仓鼠侠采纳,获得10
12秒前
Jin0717发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098501
求助须知:如何正确求助?哪些是违规求助? 4310677
关于积分的说明 13431614
捐赠科研通 4137982
什么是DOI,文献DOI怎么找? 2266990
邀请新用户注册赠送积分活动 1270081
关于科研通互助平台的介绍 1206363