亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving milling tool wear prediction through a hybrid NCA-SMA-GRU deep learning model

形状记忆合金* 计算机科学 深度学习 人工智能 机器学习 算法
作者
Zhongyuan Che,Chong Peng,T. Warren Liao,Jikun Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124556-124556 被引量:15
标识
DOI:10.1016/j.eswa.2024.124556
摘要

Milling tool wear, a ubiquitous challenge in industrial automation and manufacturing, leads to diminished equipment utilization, escalating costs, and a decline in product quality. The prediction of tool wear is a complex and challenging task, as it involves numerous variables. This paper introduces a pioneering hybrid approach, the NCA-SMA-GRU model. It involves the hybridization of three major components and is designed to enhance the precision and expedite the process of tool wear prediction. The NCA component is adept at filtering and retaining the most relevant features associated with milling tool wear from the raw signals, and it also improves the model's interpretability. Subsequently, SMA optimizes the GRU network's hyperparameters, including the initial learning rate, hidden layer neurons, network training iterations, and the L2 regularization factor, to identify an optimal combination that bolsters predictive performance. The modeling steps and the development of fitness function are explained in detail. The model's efficacy is rigorously evaluated using data from the 2010 High Speed CNC Machine Tool Health Prediction Contest (PHM 2010), which encompasses wear data from both single and multiple cutters. The performance is compared using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2), and computational time. To assess the ability and characteristics of the proposed approach, other popular hybrid models are constructed for comparative analysis. The results demonstrate that the proposed model addresses the limitations of traditional prediction methods and provides insights into the development of deep learning and optimization algorithms for tool wear prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taster完成签到,获得积分10
8秒前
27秒前
光亮静槐完成签到 ,获得积分10
30秒前
30秒前
SilverPlane发布了新的文献求助10
35秒前
SilverPlane完成签到,获得积分10
43秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
ding应助阳光的星月采纳,获得10
57秒前
1分钟前
1分钟前
1分钟前
2分钟前
烂漫的绿茶完成签到 ,获得积分10
2分钟前
DONG发布了新的文献求助10
2分钟前
寂寞的尔丝完成签到 ,获得积分10
2分钟前
小小绿发布了新的文献求助50
3分钟前
超级的千青完成签到 ,获得积分10
3分钟前
ding应助知闲采纳,获得10
4分钟前
4分钟前
满意机器猫完成签到 ,获得积分10
4分钟前
宁不正发布了新的文献求助10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
4分钟前
赘婿应助宁不正采纳,获得10
5分钟前
5分钟前
5分钟前
小小绿完成签到,获得积分20
5分钟前
量子星尘发布了新的文献求助10
6分钟前
Sylvia_J完成签到 ,获得积分10
6分钟前
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
hhh完成签到 ,获得积分10
7分钟前
Shicheng完成签到,获得积分10
7分钟前
汉堡包应助科研通管家采纳,获得10
8分钟前
wangfaqing942完成签到 ,获得积分10
9分钟前
10分钟前
飞天的鱼发布了新的文献求助10
10分钟前
飞天的鱼完成签到,获得积分10
10分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635145
求助须知:如何正确求助?哪些是违规求助? 4734927
关于积分的说明 14989786
捐赠科研通 4792851
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480280