Improving milling tool wear prediction through a hybrid NCA-SMA-GRU deep learning model

形状记忆合金* 计算机科学 深度学习 人工智能 机器学习 算法
作者
Zhongyuan Che,Chong Peng,T. Warren Liao,Jikun Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124556-124556 被引量:1
标识
DOI:10.1016/j.eswa.2024.124556
摘要

Milling tool wear, a ubiquitous challenge in industrial automation and manufacturing, leads to diminished equipment utilization, escalating costs, and a decline in product quality. The prediction of tool wear is a complex and challenging task, as it involves numerous variables. This paper introduces a pioneering hybrid approach, the NCA-SMA-GRU model. It involves the hybridization of three major components and is designed to enhance the precision and expedite the process of tool wear prediction. The NCA component is adept at filtering and retaining the most relevant features associated with milling tool wear from the raw signals, and it also improves the model's interpretability. Subsequently, SMA optimizes the GRU network's hyperparameters, including the initial learning rate, hidden layer neurons, network training iterations, and the L2 regularization factor, to identify an optimal combination that bolsters predictive performance. The modeling steps and the development of fitness function are explained in detail. The model's efficacy is rigorously evaluated using data from the 2010 High Speed CNC Machine Tool Health Prediction Contest (PHM 2010), which encompasses wear data from both single and multiple cutters. The performance is compared using metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-Squared (R2), and computational time. To assess the ability and characteristics of the proposed approach, other popular hybrid models are constructed for comparative analysis. The results demonstrate that the proposed model addresses the limitations of traditional prediction methods and provides insights into the development of deep learning and optimization algorithms for tool wear prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行动完成签到,获得积分10
刚刚
谢书南完成签到,获得积分10
刚刚
生动的踏歌完成签到,获得积分10
刚刚
阿白完成签到 ,获得积分10
1秒前
1秒前
杨衡发布了新的文献求助10
1秒前
贺贺完成签到,获得积分10
1秒前
施青文完成签到,获得积分10
1秒前
2秒前
exy完成签到,获得积分10
3秒前
mljever完成签到,获得积分10
3秒前
Serendiply完成签到,获得积分10
4秒前
4秒前
4秒前
elidan完成签到,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
Ding应助科研皇帝的民工采纳,获得10
5秒前
Zhang完成签到,获得积分10
5秒前
李世民完成签到,获得积分20
6秒前
lzw发布了新的文献求助10
6秒前
聪明的破茧完成签到,获得积分10
6秒前
科研通AI2S应助Coatings采纳,获得10
7秒前
摸鱼校尉完成签到,获得积分0
8秒前
bkagyin应助Dr.Liujun采纳,获得10
8秒前
Zsy发布了新的文献求助10
8秒前
wangklvin完成签到,获得积分10
8秒前
单薄归尘完成签到 ,获得积分10
9秒前
ANT完成签到 ,获得积分10
10秒前
吴军完成签到 ,获得积分10
10秒前
我是老大应助gugu采纳,获得10
10秒前
章半仙完成签到,获得积分10
10秒前
10秒前
元宝爱吃薯片完成签到,获得积分10
10秒前
10秒前
11秒前
现代的烤鸡完成签到,获得积分10
13秒前
情怀应助fiell采纳,获得10
13秒前
激情的纲完成签到,获得积分10
13秒前
多经历经历完成签到,获得积分10
13秒前
SAXA完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259