A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NXK发布了新的文献求助10
刚刚
刚刚
刚刚
SciGPT应助no1isme采纳,获得10
刚刚
瓜瓜发布了新的文献求助10
刚刚
饱满的诗霜关注了科研通微信公众号
1秒前
cc应助wing采纳,获得20
1秒前
211发布了新的文献求助10
1秒前
修越完成签到,获得积分10
2秒前
CodeCraft应助Regina采纳,获得10
2秒前
情怀应助xixilamn采纳,获得10
2秒前
壮壮发布了新的文献求助10
3秒前
在水一方应助小新同学采纳,获得10
3秒前
4秒前
4秒前
Owen应助sule采纳,获得10
4秒前
4秒前
修越发布了新的文献求助10
4秒前
大模型应助荻野千寻采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
xiaowang发布了新的文献求助10
5秒前
6秒前
lintao0836完成签到,获得积分20
6秒前
6秒前
7秒前
xxx发布了新的文献求助10
7秒前
8秒前
粗心的忆山完成签到,获得积分10
8秒前
英俊的铭应助wise111采纳,获得10
9秒前
瑁mao完成签到 ,获得积分10
9秒前
Orange应助cc采纳,获得10
10秒前
阔达丹亦发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
慕青应助Miyo采纳,获得10
12秒前
希希发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932