A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的听寒完成签到,获得积分10
刚刚
asdfg123发布了新的文献求助10
1秒前
1秒前
渴望者发布了新的文献求助10
2秒前
E9发布了新的文献求助10
2秒前
Kaen完成签到,获得积分10
2秒前
3秒前
放荡不羁发布了新的文献求助10
3秒前
4秒前
4秒前
李健应助小田睡不醒采纳,获得10
4秒前
junyang发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
ttxxcdx完成签到 ,获得积分10
6秒前
janice发布了新的文献求助10
6秒前
6秒前
科研通AI6应助123采纳,获得10
7秒前
imi发布了新的文献求助10
7秒前
亓大大完成签到,获得积分10
7秒前
善学以致用应助猪猪hero采纳,获得10
7秒前
8秒前
聪明的鞅发布了新的文献求助10
9秒前
共享精神应助love采纳,获得10
9秒前
9秒前
方舟完成签到,获得积分10
10秒前
核桃应助科研通管家采纳,获得10
10秒前
10秒前
myfayewang应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
核桃应助科研通管家采纳,获得10
10秒前
10秒前
迪歪歪应助E9采纳,获得10
10秒前
11秒前
充电宝应助janice采纳,获得10
11秒前
serein完成签到,获得积分10
12秒前
Vivian发布了新的文献求助10
13秒前
星辰大海应助Pluto采纳,获得10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781