A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观海云完成签到 ,获得积分10
1秒前
xiewuhua完成签到,获得积分10
2秒前
诚诚不差事完成签到,获得积分10
3秒前
无限萃完成签到,获得积分10
6秒前
dong完成签到 ,获得积分10
6秒前
丨墨月丨完成签到,获得积分10
8秒前
磊大彪完成签到 ,获得积分10
10秒前
橙子完成签到,获得积分20
12秒前
fire完成签到 ,获得积分10
18秒前
kusicfack完成签到,获得积分10
21秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
22秒前
量子星尘发布了新的文献求助10
24秒前
平凡世界完成签到 ,获得积分10
27秒前
木康薛完成签到,获得积分10
27秒前
fire完成签到 ,获得积分10
28秒前
五本笔记完成签到 ,获得积分10
32秒前
研友Bn完成签到 ,获得积分10
33秒前
33秒前
339564965完成签到,获得积分10
35秒前
可乐发布了新的文献求助10
39秒前
bener完成签到,获得积分10
40秒前
陈鹿华完成签到 ,获得积分10
41秒前
42秒前
42秒前
小录完成签到 ,获得积分10
42秒前
lym完成签到,获得积分10
44秒前
冲冲冲完成签到 ,获得积分10
45秒前
阿策完成签到,获得积分10
46秒前
sci发发发发布了新的文献求助10
47秒前
碗碗豆喵完成签到 ,获得积分10
50秒前
ccc完成签到,获得积分0
51秒前
Keyuuu30完成签到,获得积分0
52秒前
孤独的问柳完成签到,获得积分10
52秒前
sci发发发完成签到,获得积分20
57秒前
龙2024完成签到,获得积分10
58秒前
蜡笔小z完成签到 ,获得积分10
59秒前
琪琪完成签到,获得积分10
1分钟前
1分钟前
只想顺利毕业的科研狗完成签到,获得积分0
1分钟前
kaiqiang完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603452
求助须知:如何正确求助?哪些是违规求助? 4688452
关于积分的说明 14853800
捐赠科研通 4692440
什么是DOI,文献DOI怎么找? 2540735
邀请新用户注册赠送积分活动 1507039
关于科研通互助平台的介绍 1471707