A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘成发布了新的文献求助30
1秒前
chen完成签到 ,获得积分20
1秒前
1秒前
科研通AI6应助soda采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
jam发布了新的文献求助10
1秒前
暮凝发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
青岩发布了新的文献求助10
3秒前
3秒前
悦耳听芹完成签到 ,获得积分10
3秒前
热心十三发布了新的文献求助150
3秒前
4秒前
时尚的大开完成签到 ,获得积分10
4秒前
旭058应助无私的冰双采纳,获得10
4秒前
科研通AI2S应助leekk采纳,获得10
4秒前
5秒前
galvin完成签到,获得积分10
6秒前
寒冷筝完成签到,获得积分10
6秒前
自由过客发布了新的文献求助10
6秒前
Guo99完成签到,获得积分10
6秒前
6秒前
西瓜头完成签到,获得积分10
6秒前
lcc发布了新的文献求助50
7秒前
WangYZ发布了新的文献求助30
7秒前
机智的皮皮虾完成签到,获得积分10
7秒前
8秒前
8秒前
研友_VZG7GZ应助DandanHan0916采纳,获得10
8秒前
8秒前
aaaaaa完成签到,获得积分10
9秒前
XiaoMaomi完成签到,获得积分10
9秒前
9秒前
9秒前
2024完成签到,获得积分10
10秒前
牛姐完成签到,获得积分10
10秒前
幽默若冰发布了新的文献求助10
10秒前
漫鱼完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676