A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
Darren发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
2秒前
qinjiayin发布了新的文献求助30
2秒前
小二郎应助缥缈的机器猫采纳,获得10
3秒前
Levi完成签到 ,获得积分10
5秒前
搞怪的三毒完成签到,获得积分20
5秒前
koial完成签到 ,获得积分10
6秒前
今后应助古月采纳,获得10
6秒前
西海岸的风完成签到 ,获得积分10
7秒前
如意板栗完成签到,获得积分10
8秒前
Boniu_wang完成签到,获得积分10
9秒前
10秒前
852应助朴实的映秋采纳,获得10
11秒前
11秒前
如意板栗发布了新的文献求助10
11秒前
11秒前
11秒前
今后应助蒋念寒采纳,获得10
11秒前
12秒前
一支布洛芬完成签到,获得积分20
13秒前
大侠发布了新的文献求助10
16秒前
16秒前
16秒前
鹤九发布了新的文献求助10
16秒前
白子双发布了新的文献求助10
17秒前
觉皇发布了新的文献求助10
17秒前
18秒前
20秒前
asdfghjkl发布了新的文献求助10
21秒前
共享精神应助fu采纳,获得10
21秒前
淡淡大白完成签到 ,获得积分10
21秒前
博士后完成签到 ,获得积分10
22秒前
22秒前
22秒前
yyf发布了新的文献求助10
22秒前
鹤九完成签到,获得积分10
22秒前
玉玉发布了新的文献求助10
23秒前
25秒前
ghghgh发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452