A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助小田采纳,获得10
1秒前
goahead0523发布了新的文献求助10
2秒前
魔幻蓉完成签到,获得积分10
2秒前
所所应助生动朝雪采纳,获得10
3秒前
在水一方应助vanshaw.vs采纳,获得20
4秒前
FashionBoy应助XIXI采纳,获得10
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
阔达的梦秋完成签到,获得积分20
4秒前
星辰大海应助研友_8K2GPZ采纳,获得10
4秒前
wonhui完成签到,获得积分20
5秒前
大模型应助phw2333采纳,获得30
6秒前
王提完成签到,获得积分10
8秒前
小美完成签到 ,获得积分10
8秒前
...完成签到,获得积分10
9秒前
勤恳的磬发布了新的文献求助10
10秒前
10秒前
YUN完成签到,获得积分10
10秒前
11秒前
iWatchTheMoon应助王提采纳,获得10
12秒前
稳重的灵安完成签到,获得积分10
13秒前
zho发布了新的文献求助10
13秒前
研友_8K2GPZ完成签到,获得积分10
14秒前
iNk应助月亮上的猫采纳,获得10
15秒前
XIXI发布了新的文献求助10
16秒前
勤恳的磬完成签到,获得积分10
17秒前
sfzz完成签到,获得积分10
17秒前
萧羊青完成签到,获得积分10
17秒前
mushrooms119发布了新的文献求助10
18秒前
19秒前
田様应助海茵采纳,获得10
21秒前
21秒前
22秒前
汉堡包应助zsl采纳,获得10
22秒前
顾矜应助江幻天采纳,获得10
24秒前
星辰大海应助xlb采纳,获得10
24秒前
yzk发布了新的文献求助10
25秒前
qifunongsuo1213完成签到,获得积分10
25秒前
26秒前
MIN发布了新的文献求助10
26秒前
26秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388