A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先生范发布了新的文献求助10
1秒前
寒树发布了新的文献求助10
1秒前
xjn完成签到,获得积分10
1秒前
2秒前
CCC完成签到,获得积分10
2秒前
Jasper应助医院的孩子采纳,获得10
3秒前
nchudddd发布了新的文献求助10
3秒前
4秒前
hzh666完成签到,获得积分20
4秒前
王敬顺发布了新的文献求助10
4秒前
xx1发布了新的文献求助10
4秒前
Artin_Sun完成签到,获得积分10
7秒前
7秒前
华仔应助岳维芸采纳,获得10
7秒前
烟花应助岳维芸采纳,获得10
7秒前
yiyi完成签到,获得积分20
8秒前
杨二锤发布了新的文献求助10
8秒前
9秒前
9秒前
所所应助张巨锋采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
10秒前
Wind应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
litt应助科研通管家采纳,获得10
10秒前
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
李健的小迷弟应助金肆采纳,获得10
11秒前
11发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
可爱的函函应助gdh采纳,获得10
12秒前
12秒前
橘子发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233