A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形元绿完成签到 ,获得积分10
1秒前
小蘑菇应助蟑螂恶霸采纳,获得10
1秒前
清清清发布了新的文献求助20
2秒前
2秒前
Emily发布了新的文献求助10
3秒前
yyanxuemin919发布了新的文献求助10
3秒前
Cheung2121发布了新的文献求助10
5秒前
5秒前
6秒前
矮小的柠檬完成签到,获得积分10
6秒前
6秒前
绿色之梦完成签到 ,获得积分10
7秒前
壮观问寒发布了新的文献求助10
7秒前
乔晚应助限时达采纳,获得10
7秒前
7秒前
乐乐应助huanir99采纳,获得10
9秒前
9秒前
星辰大海应助mouxq采纳,获得10
9秒前
典雅碧空发布了新的文献求助10
10秒前
iu发布了新的文献求助10
10秒前
10秒前
英俊的铭应助Cheung2121采纳,获得30
10秒前
爱笑以松发布了新的文献求助10
13秒前
上官若男应助好运莲莲采纳,获得10
14秒前
bjjtdx1997发布了新的文献求助10
14秒前
圆圆完成签到,获得积分10
14秒前
sleep应助危机的元风采纳,获得10
15秒前
蟑螂恶霸发布了新的文献求助10
15秒前
15秒前
完美世界应助ashley采纳,获得10
16秒前
123123应助等乙天采纳,获得10
16秒前
Cheung2121完成签到,获得积分10
17秒前
爱听歌的亦玉完成签到,获得积分20
18秒前
19秒前
微末发布了新的文献求助10
20秒前
爱笑以松完成签到,获得积分10
20秒前
20秒前
MAY发布了新的文献求助30
22秒前
99hz发布了新的文献求助10
23秒前
huanir99发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318