A Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation

计算机科学 星团(航天器) 数据聚合器 信息隐私 块链 联合学习 计算机网络 计算机安全 分布式计算 无线传感器网络
作者
Chia‐Yu Lin,Chih-Hung Han,Weihong Yin,Ted T. Kuo
标识
DOI:10.1109/icnc59896.2024.10556276
摘要

Traditional machine learning typically requires training datasets on local machines or data centers. However, this approach may raise concerns related to data privacy and security. To address these issues, federated learning was proposed. However, federated learning, which involves a server communicating with multiple client devices, can significantly burden the server. Even when using hierarchical federated learning, there is still a considerable cost associated with communication at intermediate nodes. To further alleviate the communication cost burden on intermediate nodes, the most direct approach is to have each intermediate node select a subset of clients for training and accept their model parameters. However, client training data distributions are not uniform, leading to a state known as Non-Independent and Identically Distributed (Non-lID). Unthinkingly selecting clients for training may result in more imbalanced data selection and bias the model training in specific directions. Therefore, we propose the "post-clustering selection", where clients with similar data distributions are grouped together, and a certain proportion of clients are selected as representatives for training. This approach allows intermediate nodes to reduce communication costs while avoiding the selection of clients with highly imbalanced data distributions. Finally, we integrate differential privacy and secure aggregation to enhance privacy protection and present a framework called 'Cluster-based Privacy-Enhanced Hierarchical Federated Learning Framework with Secure Aggregation (CPE-HFL). From experiments, we reduce the communication volume by up to 29% while maintaining accuracy. Additionally, the accuracy improves more in cases with clustering than those without clustering. The proposed framework can reduce communication costs and effectively protect clients' privacy while maintaining model accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武小伟发布了新的文献求助20
1秒前
1秒前
赵芳发布了新的文献求助10
1秒前
1秒前
胡春柳应助saby采纳,获得10
1秒前
1秒前
初晴完成签到,获得积分20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
汉堡包应助夏日重现采纳,获得10
2秒前
小马甲应助碧蓝歌曲采纳,获得10
2秒前
高兴海燕发布了新的文献求助10
2秒前
3秒前
平淡依玉发布了新的文献求助10
3秒前
genuine完成签到,获得积分10
3秒前
3秒前
4秒前
jingjing完成签到,获得积分10
4秒前
4秒前
mrpy应助养乐多采纳,获得10
4秒前
5秒前
6秒前
共享精神应助Certainty橙子采纳,获得10
6秒前
算命先生发布了新的文献求助10
6秒前
6秒前
XiaTong完成签到 ,获得积分10
7秒前
7秒前
cy完成签到,获得积分10
7秒前
7秒前
nannan关注了科研通微信公众号
7秒前
8秒前
努力搬砖努力干完成签到,获得积分10
8秒前
9秒前
脑洞疼应助HH采纳,获得10
9秒前
天天快乐应助Aurora.H采纳,获得10
9秒前
珍妮发布了新的文献求助10
9秒前
小二郎应助AY采纳,获得10
9秒前
怕黑海冬发布了新的文献求助10
9秒前
超人无敌完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853