Identification of common mechanisms and biomarkers for dermatomyositis and atherosclerosis based on bioinformatics analysis

基因 生物 计算生物学 微阵列分析技术 微阵列 基因共表达网络 基因表达谱 生物信息学 皮肌炎 基因表达 遗传学 医学 病理 基因本体论
作者
Yirong Ma,Junyu Lai,Qiang Wan,Zhengtao Chen,Sun Liqiang,Qinhe Zhang,Chengyan Guan,Qiming Li,Jianguang Wu
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (6) 被引量:7
标识
DOI:10.1111/srt.13808
摘要

Abstract Background Dermatomyositis (DM) manifests as an autoimmune and inflammatory condition, clinically characterized by subacute progressive proximal muscle weakness, rashes or both along with extramuscular manifestations. Literature indicates that DM shares common risk factors with atherosclerosis (AS), and they often co‐occur, yet the etiology and pathogenesis remain to be fully elucidated. This investigation aims to utilize bioinformatics methods to clarify the crucial genes and pathways that influence the pathophysiology of both DM and AS. Method Microarray datasets for DM (GSE128470, GSE1551, GSE143323) and AS (GSE100927, GSE28829, GSE43292) were retrieved from the Gene Expression Omnibus (GEO) database. The weighted gene co‐expression network analysis (WGCNA) was used to reveal their co‐expressed modules. Differentially expression genes (DEGs) were identified using the “limma” package in R software, and the functions of common DEGs were determined by functional enrichment analysis. A protein‐protein interaction (PPI) network was established using the STRING database, with central genes evaluated by the cytoHubba plugin, and validated through external datasets. Immune infiltration analysis of the hub genes was conducted using the CIBERSORT method, along with Gene Set Enrichment Analysis (GSEA). Finally, the NetworkAnalyst platform was employed to examine the transcription factors (TFs) responsible for regulating pivotal crosstalk genes. Results Utilizing WGCNA analysis, a total of 271 overlapping genes were pinpointed. Subsequent DEG analysis revealed 34 genes that are commonly found in both DM and AS, including 31 upregulated genes and 3 downregulated genes. The Degree Centrality algorithm was applied separately to the WGCNA and DEG collections to select the 15 genes with the highest connectivity, and crossing the two gene sets yielded 3 hub genes (PTPRC, TYROBP, CXCR4). Validation with external datasets showed their diagnostic value for DM and AS. Analysis of immune infiltration indicates that lymphocytes and macrophages are significantly associated with the pathogenesis of DM and AS. Moreover, GSEA analysis suggested that the shared genes are enriched in various receptor interactions and multiple cytokines and receptor signaling pathways. We coupled the 3 hub genes with their respective predicted genes, identifying a potential key TF, CBFB, which interacts with all 3 hub genes. Conclusion This research utilized comprehensive bioinformatics techniques to explore the shared pathogenesis of DM and AS. The three key genes, including PTPRC, TYROBP, and CXCR4, are related to the pathogenesis of DM and AS. The central genes and their correlations with immune cells may serve as potential diagnostic and therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我到了啊完成签到,获得积分10
刚刚
自然的枫叶应助孔雀翎采纳,获得10
刚刚
wanci应助好名字采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
syx发布了新的文献求助10
1秒前
Jasper应助Jordon采纳,获得10
1秒前
阿部发布了新的文献求助50
1秒前
Bellis完成签到 ,获得积分10
1秒前
1秒前
Owen应助昵称11采纳,获得10
2秒前
2秒前
zyp1229发布了新的文献求助10
2秒前
方意发布了新的文献求助10
2秒前
星辰完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助Yang采纳,获得30
3秒前
4秒前
云想萧潇完成签到,获得积分10
4秒前
明天会早睡的完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
纪间发布了新的文献求助10
6秒前
syx完成签到,获得积分10
6秒前
王丽娟完成签到,获得积分10
6秒前
7秒前
善学以致用应助aimad采纳,获得10
7秒前
7秒前
galioo3000发布了新的文献求助10
8秒前
百甲完成签到,获得积分10
8秒前
cathylll完成签到,获得积分10
8秒前
小小发布了新的文献求助10
8秒前
9秒前
清秀语梦完成签到,获得积分10
9秒前
zyp1229完成签到,获得积分10
9秒前
Liu发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285