Identification of common mechanisms and biomarkers for dermatomyositis and atherosclerosis based on bioinformatics analysis

基因 生物 计算生物学 微阵列分析技术 微阵列 基因共表达网络 基因表达谱 生物信息学 皮肌炎 基因表达 遗传学 医学 病理 基因本体论
作者
Yirong Ma,Junyu Lai,Qiang Wan,Zhengtao Chen,Sun Liqiang,Qinhe Zhang,Chengyan Guan,Qiming Li,Jianguang Wu
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (6) 被引量:4
标识
DOI:10.1111/srt.13808
摘要

Abstract Background Dermatomyositis (DM) manifests as an autoimmune and inflammatory condition, clinically characterized by subacute progressive proximal muscle weakness, rashes or both along with extramuscular manifestations. Literature indicates that DM shares common risk factors with atherosclerosis (AS), and they often co‐occur, yet the etiology and pathogenesis remain to be fully elucidated. This investigation aims to utilize bioinformatics methods to clarify the crucial genes and pathways that influence the pathophysiology of both DM and AS. Method Microarray datasets for DM (GSE128470, GSE1551, GSE143323) and AS (GSE100927, GSE28829, GSE43292) were retrieved from the Gene Expression Omnibus (GEO) database. The weighted gene co‐expression network analysis (WGCNA) was used to reveal their co‐expressed modules. Differentially expression genes (DEGs) were identified using the “limma” package in R software, and the functions of common DEGs were determined by functional enrichment analysis. A protein‐protein interaction (PPI) network was established using the STRING database, with central genes evaluated by the cytoHubba plugin, and validated through external datasets. Immune infiltration analysis of the hub genes was conducted using the CIBERSORT method, along with Gene Set Enrichment Analysis (GSEA). Finally, the NetworkAnalyst platform was employed to examine the transcription factors (TFs) responsible for regulating pivotal crosstalk genes. Results Utilizing WGCNA analysis, a total of 271 overlapping genes were pinpointed. Subsequent DEG analysis revealed 34 genes that are commonly found in both DM and AS, including 31 upregulated genes and 3 downregulated genes. The Degree Centrality algorithm was applied separately to the WGCNA and DEG collections to select the 15 genes with the highest connectivity, and crossing the two gene sets yielded 3 hub genes (PTPRC, TYROBP, CXCR4). Validation with external datasets showed their diagnostic value for DM and AS. Analysis of immune infiltration indicates that lymphocytes and macrophages are significantly associated with the pathogenesis of DM and AS. Moreover, GSEA analysis suggested that the shared genes are enriched in various receptor interactions and multiple cytokines and receptor signaling pathways. We coupled the 3 hub genes with their respective predicted genes, identifying a potential key TF, CBFB, which interacts with all 3 hub genes. Conclusion This research utilized comprehensive bioinformatics techniques to explore the shared pathogenesis of DM and AS. The three key genes, including PTPRC, TYROBP, and CXCR4, are related to the pathogenesis of DM and AS. The central genes and their correlations with immune cells may serve as potential diagnostic and therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助清秀的语山采纳,获得50
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
无花果应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
大李包完成签到,获得积分10
刚刚
思源应助费城青年采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
帮助我的人永远不死完成签到,获得积分20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
LZQ应助科研通管家采纳,获得20
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1221211应助科研通管家采纳,获得10
1秒前
zzzq应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
4秒前
4秒前
单身的溪流完成签到 ,获得积分10
4秒前
大李包发布了新的文献求助10
4秒前
苗松完成签到,获得积分10
5秒前
FashionBoy应助流北爷采纳,获得10
5秒前
乐乐应助奋斗的小林采纳,获得10
5秒前
sankumao完成签到,获得积分10
5秒前
京阿尼发布了新的文献求助10
5秒前
xia发布了新的文献求助10
6秒前
SCI发布了新的文献求助10
7秒前
7秒前
zhui发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794