Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仲乔妹发布了新的文献求助10
刚刚
666发布了新的文献求助10
刚刚
刚刚
刚刚
悦耳溪流完成签到,获得积分10
1秒前
Orange应助shineshine采纳,获得10
1秒前
清脆凡阳完成签到,获得积分10
1秒前
GG发布了新的文献求助10
1秒前
1秒前
诚心的剑完成签到,获得积分10
1秒前
1秒前
Akim应助徐橙橙采纳,获得10
2秒前
默默问芙发布了新的文献求助20
2秒前
龙慧琳完成签到,获得积分10
2秒前
林少玮发布了新的文献求助10
2秒前
小白完成签到,获得积分10
2秒前
CipherSage应助杭谷波采纳,获得10
2秒前
乐观秋荷应助艾東平采纳,获得10
3秒前
文迪完成签到,获得积分10
3秒前
3秒前
Madge发布了新的文献求助10
4秒前
小浆果关注了科研通微信公众号
4秒前
捌柒陆发布了新的文献求助10
5秒前
5秒前
yzl科研爱我完成签到,获得积分10
5秒前
清脆凡阳发布了新的文献求助10
5秒前
路过地球发布了新的文献求助10
6秒前
言庭兰玉完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
AI_Medical完成签到,获得积分10
8秒前
guoguo关注了科研通微信公众号
9秒前
Blue_Eyes发布了新的文献求助10
9秒前
Bazinga发布了新的文献求助10
9秒前
黄bb完成签到,获得积分10
9秒前
李爱国应助Hiccupsssss采纳,获得10
9秒前
9秒前
哆啦十七应助导师求放过采纳,获得10
10秒前
Howes91完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884