Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于芋菊应助畅快的问枫采纳,获得200
刚刚
个性迎彤发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
InfoNinja应助luluyang采纳,获得20
3秒前
刻苦的热狗完成签到 ,获得积分10
3秒前
3秒前
光亮友安发布了新的文献求助10
4秒前
4秒前
小陈要发一区完成签到,获得积分10
5秒前
菠萝发布了新的文献求助10
6秒前
李爱国应助小圆圈采纳,获得10
6秒前
7秒前
情怀应助bwh采纳,获得10
7秒前
随便完成签到,获得积分10
7秒前
7秒前
bc发布了新的文献求助10
7秒前
深情安青应助科研小废物采纳,获得10
8秒前
11秒前
13秒前
kkneed发布了新的文献求助10
13秒前
14秒前
追寻的问玉完成签到 ,获得积分10
15秒前
乐乐应助氢锂钠钾铷铯钫采纳,获得10
16秒前
kb完成签到,获得积分10
16秒前
CipherSage应助teriteri采纳,获得10
16秒前
小犬发布了新的文献求助10
16秒前
酷波er应助YXYWZMSZ采纳,获得10
17秒前
小研究牲完成签到,获得积分20
17秒前
独特从雪发布了新的文献求助10
18秒前
酷炫板凳完成签到 ,获得积分10
21秒前
21秒前
bwh发布了新的文献求助10
21秒前
安可瓶子发布了新的文献求助10
22秒前
mtong完成签到 ,获得积分20
22秒前
CipherSage应助shen采纳,获得10
22秒前
迅速易云完成签到,获得积分10
23秒前
天天快乐应助唠叨的三问采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655