亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
9秒前
38秒前
48秒前
森林发布了新的文献求助10
58秒前
zhangxiaoqing发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
知性的剑身完成签到,获得积分10
1分钟前
DocChen发布了新的文献求助10
2分钟前
xiaoqingnian完成签到,获得积分10
2分钟前
小粒橙完成签到 ,获得积分10
2分钟前
猫抓板完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
万能图书馆应助猫抓板采纳,获得10
5分钟前
5分钟前
猫抓板发布了新的文献求助10
5分钟前
路人应助Magali采纳,获得200
5分钟前
小蘑菇应助猫抓板采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
大园完成签到 ,获得积分10
5分钟前
5分钟前
领导范儿应助Magali采纳,获得150
5分钟前
猫抓板发布了新的文献求助10
5分钟前
昭昭完成签到,获得积分10
5分钟前
5分钟前
Magali发布了新的文献求助150
5分钟前
5分钟前
昭昭发布了新的文献求助10
6分钟前
6分钟前
6分钟前
爆米花应助昭昭采纳,获得10
6分钟前
猫抓板发布了新的文献求助10
6分钟前
共享精神应助猫抓板采纳,获得10
6分钟前
6分钟前
猫抓板发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486