Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PONY完成签到,获得积分20
1秒前
1秒前
sf发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
郑洋完成签到 ,获得积分10
5秒前
星星星醒醒完成签到,获得积分10
5秒前
无辜的新晴关注了科研通微信公众号
10秒前
11秒前
Rage_Wang完成签到,获得积分10
13秒前
时尚的莛完成签到,获得积分10
13秒前
langwuya完成签到,获得积分20
13秒前
css1997完成签到 ,获得积分10
14秒前
冷傲的傲霜完成签到,获得积分10
14秒前
14秒前
langwuya发布了新的文献求助10
16秒前
快乐寄风完成签到 ,获得积分10
17秒前
hlc完成签到,获得积分10
18秒前
PONY关注了科研通微信公众号
20秒前
太空工程师完成签到,获得积分10
21秒前
21秒前
很靠近海发布了新的文献求助10
21秒前
Liu完成签到,获得积分0
22秒前
23秒前
曾经迎丝完成签到,获得积分10
24秒前
chen发布了新的文献求助10
27秒前
28秒前
咖喱鸡完成签到,获得积分10
28秒前
科研小民工应助h0jian09采纳,获得200
29秒前
AX完成签到,获得积分10
30秒前
33秒前
希希完成签到 ,获得积分20
34秒前
摇滚谬中庸完成签到 ,获得积分10
35秒前
36秒前
37秒前
38秒前
zq1992nl完成签到,获得积分10
41秒前
lovesxj941发布了新的文献求助10
41秒前
李爱国应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
wanci应助科研通管家采纳,获得10
43秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096