Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助陈龙采纳,获得10
刚刚
1秒前
太阳发布了新的文献求助10
2秒前
彭于晏应助Yidie采纳,获得10
3秒前
3秒前
曾舒欣发布了新的文献求助30
3秒前
4秒前
有个公子她姓李完成签到,获得积分10
4秒前
优秀关注了科研通微信公众号
4秒前
蝈蝈完成签到,获得积分10
4秒前
sqz_df完成签到,获得积分10
5秒前
5秒前
fan完成签到 ,获得积分10
5秒前
微笑襄完成签到 ,获得积分10
5秒前
6秒前
怕孤独的花瓣完成签到,获得积分10
6秒前
关关过应助Sea_U采纳,获得50
6秒前
芳芳子发布了新的文献求助10
7秒前
cheng发布了新的文献求助10
7秒前
数学情缘发布了新的文献求助10
8秒前
七塔蹦完成签到,获得积分10
9秒前
zmr完成签到,获得积分10
9秒前
明亮灭绝发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
LIUDEHUA发布了新的文献求助10
10秒前
慕青应助sqz_df采纳,获得10
11秒前
爱撒娇的大开完成签到 ,获得积分10
11秒前
耍酷橘子完成签到 ,获得积分10
11秒前
陈龙发布了新的文献求助10
12秒前
12秒前
lemon完成签到,获得积分0
13秒前
高高完成签到,获得积分10
13秒前
Owen应助芳芳子采纳,获得10
13秒前
彭于晏应助kongmeng采纳,获得10
13秒前
11完成签到,获得积分10
14秒前
树林发布了新的文献求助10
14秒前
完美世界应助WillGUO采纳,获得10
14秒前
YOLO12138应助LIUDEHUA采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709