Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 分类器(UML) 哲学 语言学
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:217: 111535-111535 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助受伤的随阴采纳,获得10
1秒前
1秒前
胡图图完成签到 ,获得积分10
1秒前
无私毛豆发布了新的文献求助10
1秒前
今后应助吃不了了兜着走采纳,获得10
1秒前
ypj9777完成签到,获得积分20
1秒前
菲菲公主完成签到,获得积分10
2秒前
2秒前
落花生发布了新的文献求助10
2秒前
风趣雪卉完成签到,获得积分10
2秒前
kkk完成签到 ,获得积分10
2秒前
爱读文献的小张完成签到,获得积分10
3秒前
3秒前
丘比特应助牛牛采纳,获得10
3秒前
Jiayou Zhang发布了新的文献求助10
3秒前
lx840518发布了新的文献求助10
3秒前
海纳百川完成签到,获得积分10
3秒前
haha111完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
玄烨完成签到,获得积分10
6秒前
pan20完成签到,获得积分10
6秒前
皮卡丘2023发布了新的文献求助10
6秒前
6秒前
完美世界应助小小怪将军采纳,获得10
7秒前
7秒前
zzz完成签到,获得积分10
8秒前
8秒前
ding应助平等创死每一个人采纳,获得10
8秒前
小二郎应助After采纳,获得10
8秒前
如意发布了新的文献求助10
8秒前
杨朝进完成签到,获得积分10
8秒前
贪玩晶发布了新的文献求助10
9秒前
丘比特应助yht18893912614采纳,获得10
9秒前
早日毕业完成签到,获得积分10
9秒前
zhuo完成签到,获得积分10
9秒前
托比昂首挺胸完成签到,获得积分10
10秒前
酷波er应助61采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439468
求助须知:如何正确求助?哪些是违规求助? 4550592
关于积分的说明 14225410
捐赠科研通 4471688
什么是DOI,文献DOI怎么找? 2450447
邀请新用户注册赠送积分活动 1441280
关于科研通互助平台的介绍 1417883