亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 分类器(UML) 哲学 语言学
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:217: 111535-111535 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xixiazhiwang完成签到 ,获得积分10
8秒前
18秒前
牧野牧发布了新的文献求助10
24秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
牧野牧完成签到,获得积分10
41秒前
ljl86400完成签到,获得积分10
45秒前
47秒前
Owen应助Dingding采纳,获得10
51秒前
小jie发布了新的文献求助10
52秒前
12完成签到 ,获得积分10
1分钟前
小jie完成签到,获得积分10
1分钟前
ajing完成签到,获得积分10
1分钟前
小二郎应助小jie采纳,获得10
1分钟前
OhHH完成签到 ,获得积分10
1分钟前
shier完成签到 ,获得积分10
1分钟前
2分钟前
浮游应助木子采纳,获得10
2分钟前
周炎发布了新的文献求助10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
fft完成签到,获得积分10
2分钟前
狂野的衬衫完成签到,获得积分10
2分钟前
Dingding发布了新的文献求助10
2分钟前
dahua完成签到 ,获得积分10
3分钟前
3分钟前
程大学发布了新的文献求助10
3分钟前
Dingding关注了科研通微信公众号
3分钟前
程大学完成签到,获得积分10
3分钟前
程大学驳回了ZJX应助
3分钟前
3分钟前
思源应助fft采纳,获得10
3分钟前
yys发布了新的文献求助10
3分钟前
打打应助yys采纳,获得10
3分钟前
wearelulu完成签到,获得积分10
3分钟前
4分钟前
sjj发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
在水一方应助sjj采纳,获得10
4分钟前
饼干肥熊完成签到 ,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148266
求助须知:如何正确求助?哪些是违规求助? 4344641
关于积分的说明 13529679
捐赠科研通 4186621
什么是DOI,文献DOI怎么找? 2295762
邀请新用户注册赠送积分活动 1296179
关于科研通互助平台的介绍 1239953