已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 语言学 哲学 分类器(UML)
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:217: 111535-111535
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大凌寒完成签到 ,获得积分10
刚刚
mu完成签到,获得积分10
刚刚
刚刚
2889580752完成签到,获得积分20
刚刚
3秒前
DDS发布了新的文献求助10
3秒前
8941完成签到 ,获得积分10
4秒前
酷酷的王完成签到 ,获得积分10
7秒前
蕾蕾子发布了新的文献求助10
8秒前
酷波er应助yiduo采纳,获得10
11秒前
华仔应助yiduo采纳,获得10
11秒前
李健应助yiduo采纳,获得10
11秒前
彭于晏应助yiduo采纳,获得10
11秒前
娜娜完成签到 ,获得积分10
11秒前
儒雅的焦发布了新的文献求助10
13秒前
何劲松完成签到,获得积分10
14秒前
轻松砖家完成签到,获得积分10
15秒前
lixiaolu完成签到 ,获得积分10
18秒前
19秒前
yutang完成签到 ,获得积分10
21秒前
叮咚雨发布了新的文献求助10
21秒前
Wyyyn完成签到 ,获得积分10
23秒前
DDS完成签到,获得积分10
28秒前
29秒前
31秒前
青山完成签到 ,获得积分10
31秒前
35秒前
三三完成签到 ,获得积分10
35秒前
多年以后完成签到,获得积分10
38秒前
调研昵称发布了新的文献求助10
40秒前
开放的尔云完成签到 ,获得积分10
41秒前
tianzml0应助nicolesong0614采纳,获得10
41秒前
jinjinjin完成签到 ,获得积分10
44秒前
干破天完成签到 ,获得积分10
44秒前
迅速的巧曼完成签到 ,获得积分10
44秒前
mol完成签到,获得积分10
44秒前
zzzzzttt完成签到 ,获得积分10
45秒前
Hello应助Cheny采纳,获得10
46秒前
Georgechan完成签到,获得积分10
46秒前
稞小弟完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162149
求助须知:如何正确求助?哪些是违规求助? 2813236
关于积分的说明 7899361
捐赠科研通 2472473
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142