Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 语言学 哲学 分类器(UML)
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:217: 111535-111535 被引量:12
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
时尚白晴完成签到 ,获得积分10
1秒前
AL发布了新的文献求助10
2秒前
2秒前
ZML314完成签到,获得积分10
3秒前
乔木发布了新的文献求助10
3秒前
haha完成签到,获得积分10
4秒前
5秒前
现代的花生完成签到,获得积分10
5秒前
科研通AI6.1应助hy123123采纳,获得30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
紧张的眼睛完成签到 ,获得积分10
7秒前
任驰骋完成签到,获得积分10
8秒前
有故无陨完成签到,获得积分10
8秒前
8秒前
AL完成签到,获得积分10
9秒前
清爽的人龙完成签到 ,获得积分10
9秒前
9秒前
10秒前
薏晓完成签到 ,获得积分10
10秒前
11秒前
馨达子发布了新的文献求助10
12秒前
12秒前
Jiayee发布了新的文献求助20
12秒前
darkside发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
魔幻颜发布了新的文献求助10
16秒前
cindy发布了新的文献求助10
16秒前
16秒前
天天向上完成签到 ,获得积分10
17秒前
激昂的吐司完成签到,获得积分10
18秒前
馨达子完成签到,获得积分10
20秒前
Eileen发布了新的文献求助30
21秒前
有脾气的番茄完成签到,获得积分10
21秒前
21秒前
王好完成签到 ,获得积分10
21秒前
22秒前
22秒前
Jasper应助polymer采纳,获得10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749652
求助须知:如何正确求助?哪些是违规求助? 5460000
关于积分的说明 15364278
捐赠科研通 4889098
什么是DOI,文献DOI怎么找? 2628929
邀请新用户注册赠送积分活动 1577176
关于科研通互助平台的介绍 1533851