Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 语言学 哲学 分类器(UML)
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:217: 111535-111535 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高高发布了新的文献求助10
刚刚
惠辉完成签到 ,获得积分10
1秒前
2秒前
LLLLLLLL发布了新的文献求助10
2秒前
雨柏完成签到 ,获得积分10
4秒前
da发布了新的文献求助10
4秒前
4秒前
6秒前
7秒前
南岸末阴完成签到 ,获得积分10
7秒前
CipherSage应助q792309106采纳,获得10
7秒前
超级的笑天完成签到,获得积分10
7秒前
gxmu6322完成签到,获得积分10
8秒前
8秒前
8秒前
木木发布了新的文献求助10
9秒前
9秒前
Ava应助农大长工采纳,获得10
11秒前
11秒前
11秒前
Brian_Fang发布了新的文献求助10
11秒前
XHW发布了新的文献求助10
11秒前
星辰大海应助xzf1996采纳,获得10
12秒前
傲慢葫芦发布了新的文献求助10
12秒前
13秒前
Y哦莫哦莫完成签到,获得积分10
13秒前
14秒前
颜凡桃发布了新的文献求助30
14秒前
14秒前
15秒前
帝国之刃发布了新的文献求助10
15秒前
16秒前
16秒前
naturecandy发布了新的文献求助10
16秒前
16秒前
Aria发布了新的文献求助10
17秒前
18秒前
19秒前
Brian_Fang完成签到,获得积分10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163