Prediction of programmed death-1 expression status in non–small cell lung cancer based on intratumoural and peritumoral computed tomography (CT) radiomics nomogram

医学 列线图 无线电技术 置信区间 肺癌 队列 肿瘤科 核医学 回顾性队列研究 放射科 内科学
作者
Q. Tian,J.Y. Jia,Chao Qin,Hao Zhou,Shi-Yu Zhou,Qin Ye,Yuanyuan Wu,Jian Shi,Shao Feng Duan,Fred Feng
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (9): e1089-e1100
标识
DOI:10.1016/j.crad.2024.05.008
摘要

AIM This study aimed to predict the expression of programmed death-1 (PD-1) in non-small cell lung cancer (NSCLC) using intratumoural and peritumoural computed tomography (CT) radiomics nomogram. MATERIALS AND METHODS Two hundred patients pathologically diagnosed with NSCLC from two hospitals were retrospectively analysed. Of these, 159 NSCLC patients from our hospital were randomly divided into a training cohort (n=96) and an internal validation cohort (n=63) at a ratio of 6:4, while 41 NSCLC patients from another medical institution served as the external validation cohort. The radiomic features of the gross tumour volume (GTV) and peritumoral volume (PTV) were extracted from the CT images. Optimal radiomics features were selected using least absolute shrinkage and selection operator regression analysis. Finally, a CT radiomics nomogram of clinically independent predictors combined with the best rad-score was constructed. RESULTS Compared with the 'GTV' and 'PTV' radiomics models, the combined 'GTV + PTV' radiomics model showed better predictive performance, and its AUC values in the training, internal validation, and external validation cohorts were 0.90 (95% confidence interval [CI]: 0.83-0.97), 0.85 (95% CI: 0.74-0.96) and 0.78 (95% CI: 0.63-0.92). The nomogram constructed by the rad-score of the 'GTV + PTV' radiomics model combined with clinical independent predictors (prealbumin and monocyte) had the best performance, with AUC values in each cohort being 0.92 (95% CI: 0.85-0.98), 0.88 (95% CI: 0.78-0.97), and 0.80 (95% CI: 0.66-0.94), respectively. CONCLUSIONS The intratumoural and peritumoral CT radiomics nomogram may facilitate individualised prediction of PD-1 expression status in patients with NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
跳跃的翼完成签到,获得积分10
5秒前
健忘可愁完成签到,获得积分10
6秒前
跳跃的翼发布了新的文献求助10
7秒前
8秒前
无花果应助加百莉采纳,获得10
11秒前
12秒前
Wqian发布了新的文献求助10
13秒前
16秒前
17秒前
CipherSage应助朴素的松采纳,获得10
17秒前
香菜大王完成签到 ,获得积分10
18秒前
Quanta发布了新的文献求助10
18秒前
嘻嘻哈哈发布了新的文献求助10
20秒前
21秒前
深情安青应助keyanxiaobaishu采纳,获得10
22秒前
inter发布了新的文献求助10
23秒前
SnownS发布了新的文献求助20
26秒前
27秒前
orixero应助杰果采纳,获得10
28秒前
32秒前
33秒前
bkagyin应助蓝莓西西果冻采纳,获得10
33秒前
Jodie发布了新的文献求助10
34秒前
机灵冥发布了新的文献求助10
34秒前
慕青应助朴素的松采纳,获得10
36秒前
加百莉发布了新的文献求助10
38秒前
Fitz完成签到,获得积分10
39秒前
王美美发布了新的文献求助10
43秒前
科研通AI6应助good采纳,获得10
44秒前
科研通AI6应助小巧的蓝血采纳,获得30
45秒前
尔玉完成签到 ,获得积分10
47秒前
科研通AI6应助华杰采纳,获得10
50秒前
呜呜完成签到 ,获得积分10
56秒前
欢喜的代容完成签到,获得积分10
56秒前
华仔应助动听的涵山采纳,获得10
56秒前
58秒前
孙乐777完成签到,获得积分10
1分钟前
田様应助echo采纳,获得10
1分钟前
王美美发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550