Single-Pore Nanofluidic Logic Memristor with Reconfigurable Synaptic Functions and Designable Combinations

记忆电阻器 控制重构 人工神经网络 纳米技术 逻辑门 神经形态工程学 计算机科学 计算机体系结构 人工智能 电子工程 工程类 嵌入式系统 算法 材料科学
作者
Yixin Ling,Lejian Yu,Ziwen Guo,Fazhou Bian,Yanqiong Wang,Xin Wang,Yaqi Hou,Xu Hou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (21): 14558-14565 被引量:9
标识
DOI:10.1021/jacs.4c01218
摘要

The biological neural network is a highly efficient in-memory computing system that integrates memory and logical computing functions within synapses. Moreover, reconfiguration by environmental chemical signals endows biological neural networks with dynamic multifunctions and enhanced efficiency. Nanofluidic memristors have emerged as promising candidates for mimicking synaptic functions, owing to their similarity to synapses in the underlying mechanisms of ion signaling in ion channels. However, realizing chemical signal-modulated logic functions in nanofluidic memristors, which is the basis for brain-like computing applications, remains unachieved. Here, we report a single-pore nanofluidic logic memristor with reconfigurable logic functions. Based on the different degrees of protonation and deprotonation of functional groups on the inner surface of the single pore, the modulation of the memristors and the reconfiguration of logic functions are realized. More noteworthy, this single-pore nanofluidic memristor can not only avoid the average effects in multipore but also act as a fundamental component in constructing complex neural networks through series and parallel circuits, which lays the groundwork for future artificial nanofluidic neural networks. The implementation of dynamic synaptic functions, modulation of logic gates by chemical signals, and diverse combinations in single-pore nanofluidic memristors opens up new possibilities for their applications in brain-inspired computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
德哥完成签到,获得积分10
1秒前
1秒前
1秒前
游戏人间完成签到 ,获得积分10
3秒前
huieqybghog发布了新的文献求助10
3秒前
deoyar完成签到,获得积分20
4秒前
负责的花瓣应助sdnihbhew采纳,获得20
4秒前
科研混子发布了新的文献求助10
4秒前
烟花应助王建国采纳,获得10
4秒前
4秒前
5秒前
miles发布了新的文献求助10
7秒前
时锦源完成签到,获得积分10
7秒前
楼萌黑发布了新的文献求助10
7秒前
8秒前
上官若男应助DirectorO采纳,获得30
8秒前
jiaojaioo完成签到,获得积分10
8秒前
woniurourou完成签到,获得积分20
9秒前
脆脆鲨完成签到,获得积分10
9秒前
Ava应助KEHUGE采纳,获得10
10秒前
烟花应助21号故里采纳,获得10
10秒前
风来枫去发布了新的文献求助10
10秒前
11秒前
隐形曼青应助小跳蚤采纳,获得10
11秒前
12秒前
12秒前
Singularity发布了新的文献求助10
14秒前
14秒前
15秒前
gent完成签到,获得积分10
15秒前
16秒前
luky发布了新的文献求助10
18秒前
我是老大应助xiaohong采纳,获得10
18秒前
18秒前
18秒前
18秒前
研友_Z7X1z8发布了新的文献求助200
20秒前
王建国发布了新的文献求助10
20秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248330
求助须知:如何正确求助?哪些是违规求助? 2891731
关于积分的说明 8268453
捐赠科研通 2559668
什么是DOI,文献DOI怎么找? 1388584
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627744