Risk prediction models of depression in older adults with chronic diseases

萧条(经济学) 医学 精神科 心理学 临床心理学 经济 宏观经济学
作者
Ying Zheng,Chu Zhang,Yuwen Liu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:359: 182-188 被引量:1
标识
DOI:10.1016/j.jad.2024.05.078
摘要

Detecting potential depression and identifying the critical predictors of depression among older adults with chronic diseases are essential for timely intervention and management of depression. Therefore, risk predictive models of depression in elderly people should to be further explored. A total of 3959 respondents aged 60 years or older from the wave four survey of the China Health and Retired Longitudinal Study (CHARLS) were included in this study. We used five machine learning (ML) algorithms and three data balancing techniques to construct risk prediction models (RPMs) of depression and calculated feature importance scores to determine which features are essential to depression. The prevalence of depression was 19.2 % among older Chinese adults with chronic diseases in the wave four survey. The random forest (RF) model was more accurate than the other models after balancing the data using the Synthetic Minority Oversampling Technique (SMOTE), with an area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) of 0.957 and 0.920, respectively, a balanced accuracy of 0.891 and a sensitivity of 0.875. Furthermore, we further identified several important predictors among different sex patients. Further research on the clinical impact study of our models and external validation are needed. After several techniques were used to address class imbalanced problem, most RPMs achieved satisfactory accuracy in predicting depression among elderly people with chronic diseases. The RPMs may thus become valuable screening tools for both older individuals and healthcare practitioners to assess the risk of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ds发布了新的文献求助10
刚刚
刚刚
SMG发布了新的文献求助10
刚刚
Jasper应助paopao采纳,获得10
刚刚
风再起时发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
1秒前
肖肖发布了新的文献求助10
2秒前
MOMO完成签到,获得积分10
2秒前
领导范儿应助秋兰碧萱采纳,获得10
2秒前
zkf完成签到,获得积分10
3秒前
3秒前
11完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
6秒前
wxl发布了新的文献求助10
6秒前
隐形曼青应助学术小白采纳,获得10
6秒前
拾壹完成签到,获得积分10
6秒前
7秒前
美君完成签到 ,获得积分10
7秒前
现代初珍发布了新的文献求助10
7秒前
8秒前
9秒前
科研通AI2S应助清秀的怀蕊采纳,获得10
10秒前
ZhJF发布了新的文献求助10
10秒前
10秒前
称心茹嫣发布了新的文献求助10
11秒前
11秒前
Garry发布了新的文献求助10
13秒前
ppp发布了新的文献求助10
13秒前
风再起时完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
笨笨西装完成签到,获得积分10
15秒前
腼腆的乐安完成签到,获得积分10
16秒前
隐形曼青应助兔BF采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328