Risk prediction models of depression in older adults with chronic diseases

萧条(经济学) 医学 精神科 心理学 临床心理学 宏观经济学 经济
作者
Ying Zheng,Chu Zhang,Yuwen Liu
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:359: 182-188 被引量:2
标识
DOI:10.1016/j.jad.2024.05.078
摘要

Detecting potential depression and identifying the critical predictors of depression among older adults with chronic diseases are essential for timely intervention and management of depression. Therefore, risk predictive models of depression in elderly people should to be further explored. A total of 3959 respondents aged 60 years or older from the wave four survey of the China Health and Retired Longitudinal Study (CHARLS) were included in this study. We used five machine learning (ML) algorithms and three data balancing techniques to construct risk prediction models (RPMs) of depression and calculated feature importance scores to determine which features are essential to depression. The prevalence of depression was 19.2 % among older Chinese adults with chronic diseases in the wave four survey. The random forest (RF) model was more accurate than the other models after balancing the data using the Synthetic Minority Oversampling Technique (SMOTE), with an area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) of 0.957 and 0.920, respectively, a balanced accuracy of 0.891 and a sensitivity of 0.875. Furthermore, we further identified several important predictors among different sex patients. Further research on the clinical impact study of our models and external validation are needed. After several techniques were used to address class imbalanced problem, most RPMs achieved satisfactory accuracy in predicting depression among elderly people with chronic diseases. The RPMs may thus become valuable screening tools for both older individuals and healthcare practitioners to assess the risk of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
楚岸发布了新的文献求助10
3秒前
阿强哥20241101完成签到,获得积分10
3秒前
TQY完成签到,获得积分10
4秒前
Khr1stINK发布了新的文献求助10
4秒前
宁静致远完成签到,获得积分10
4秒前
mxbyccbaby完成签到,获得积分10
5秒前
5秒前
楼寒天发布了新的文献求助30
5秒前
5秒前
jdmeme完成签到 ,获得积分10
6秒前
DVD完成签到 ,获得积分10
7秒前
学术嫪毐完成签到,获得积分10
7秒前
Xyyy发布了新的文献求助10
8秒前
uu完成签到,获得积分10
8秒前
小蘑菇应助赵赵赵采纳,获得10
8秒前
阿兹卡班狂徒完成签到 ,获得积分10
8秒前
8秒前
yuefeng发布了新的文献求助10
9秒前
澳臻白发布了新的文献求助10
9秒前
10秒前
刘大妮发布了新的文献求助10
10秒前
10秒前
王欧尼发布了新的文献求助10
11秒前
sooya关注了科研通微信公众号
11秒前
12秒前
12秒前
青木蓝发布了新的文献求助10
14秒前
852应助gaga采纳,获得10
14秒前
15秒前
15秒前
游尘发布了新的文献求助10
16秒前
bkagyin应助zhaowenxian采纳,获得10
16秒前
水电费第三方完成签到,获得积分20
17秒前
斯文败类应助lalala采纳,获得10
17秒前
小王爱看文献完成签到,获得积分10
18秒前
李明完成签到,获得积分10
18秒前
酷波er应助Khr1stINK采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794