Coupling AI with empirical research – A case of 3D printed food technology

3d打印 联轴节(管道) 实证研究 计算机科学 业务 食品科学 人工智能 营销 制造工程 机械工程 工程类 数学 统计 化学
作者
Clare D’Souza,Achini Adkari,Damminda Alahakoon
出处
期刊:Food Quality and Preference [Elsevier]
卷期号:120: 105229-105229
标识
DOI:10.1016/j.foodqual.2024.105229
摘要

3D-printed foods remain narrowly understood by consumers, limiting their ability to make informed choices and potentially obscuring the broader reality of this market. This research aims to investigate the factors influencing consumers' knowledge, motivation, and intention to consume 3D foods. Leveraging Artificial Intelligence logic, we foreground consumers' opinions and sentiments about 3D-printed food preferences, drawing on empirical data from two surveys. The findings of sentiment analysis show that the level of knowledge is critical in forming consumer sentiments both, positive and negative. Survey 1 examines the variations in positive affect, negative affect, and behavioral intention toward 3D-printed foods, considering extensive and limited levels of knowledge adequacy. This investigation uses the Knowledge Attitude-Behaviour theoretical model. Survey 2 identifies relationships through Topic recognition and applies the approach-avoidance motivation theory to discern the connection between health choices. Motivation (approach)/(avoidance) for 3D-printed foods both, had a positive and significant effect on healthy food choices. While Motivation (avoidance) had a positive and significant effect on resistance to new foods, Motivation (approach) of 3-D foods was not supported. The findings represented the importance of motivational tendencies, such as approach and avoidance, in shaping decisions related to healthy eating and receptiveness to innovative food concepts. This research presents an opportunity for researchers and practitioners to deepen their understanding of food development and consumer trends in the 3D-printed food market. Relying solely on User-Generated Content for conclusions may be insufficient. Additional research methodologies and data sources are necessary for a comprehensive understanding of behavior and food preferences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guozizi发布了新的文献求助30
1秒前
上官若男应助yangfuning采纳,获得10
1秒前
婺源完成签到 ,获得积分10
1秒前
2秒前
文瑶琪完成签到,获得积分20
2秒前
2秒前
浮游应助小二_来篇一作采纳,获得10
3秒前
坚强的初蓝完成签到,获得积分10
3秒前
jinx123456完成签到,获得积分10
3秒前
钉钉发布了新的文献求助10
3秒前
KcNco发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
jiyishuaxin完成签到,获得积分10
5秒前
乙醇发布了新的文献求助10
6秒前
Dylan完成签到,获得积分10
6秒前
热情的善愁关注了科研通微信公众号
6秒前
6秒前
7秒前
小高同学完成签到,获得积分10
7秒前
TT001完成签到,获得积分10
8秒前
SmallSun应助zxc采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
lily完成签到,获得积分10
9秒前
所所应助shydasd采纳,获得10
9秒前
风吹麦田应助mark2021采纳,获得200
9秒前
Gengen完成签到 ,获得积分10
9秒前
10秒前
lu发布了新的文献求助10
10秒前
怡然的白开水完成签到,获得积分10
10秒前
10秒前
jack完成签到,获得积分10
10秒前
11秒前
樊钒钒发布了新的文献求助10
12秒前
12秒前
高山流水发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512125
求助须知:如何正确求助?哪些是违规求助? 4606563
关于积分的说明 14500223
捐赠科研通 4541983
什么是DOI,文献DOI怎么找? 2488756
邀请新用户注册赠送积分活动 1470848
关于科研通互助平台的介绍 1443052