Coupling AI with empirical research – A case of 3D printed food technology

3d打印 联轴节(管道) 实证研究 计算机科学 业务 食品科学 人工智能 营销 制造工程 机械工程 工程类 数学 统计 化学
作者
Clare D’Souza,Achini Adkari,Damminda Alahakoon
出处
期刊:Food Quality and Preference [Elsevier]
卷期号:120: 105229-105229
标识
DOI:10.1016/j.foodqual.2024.105229
摘要

3D-printed foods remain narrowly understood by consumers, limiting their ability to make informed choices and potentially obscuring the broader reality of this market. This research aims to investigate the factors influencing consumers' knowledge, motivation, and intention to consume 3D foods. Leveraging Artificial Intelligence logic, we foreground consumers' opinions and sentiments about 3D-printed food preferences, drawing on empirical data from two surveys. The findings of sentiment analysis show that the level of knowledge is critical in forming consumer sentiments both, positive and negative. Survey 1 examines the variations in positive affect, negative affect, and behavioral intention toward 3D-printed foods, considering extensive and limited levels of knowledge adequacy. This investigation uses the Knowledge Attitude-Behaviour theoretical model. Survey 2 identifies relationships through Topic recognition and applies the approach-avoidance motivation theory to discern the connection between health choices. Motivation (approach)/(avoidance) for 3D-printed foods both, had a positive and significant effect on healthy food choices. While Motivation (avoidance) had a positive and significant effect on resistance to new foods, Motivation (approach) of 3-D foods was not supported. The findings represented the importance of motivational tendencies, such as approach and avoidance, in shaping decisions related to healthy eating and receptiveness to innovative food concepts. This research presents an opportunity for researchers and practitioners to deepen their understanding of food development and consumer trends in the 3D-printed food market. Relying solely on User-Generated Content for conclusions may be insufficient. Additional research methodologies and data sources are necessary for a comprehensive understanding of behavior and food preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大炮台发布了新的文献求助10
1秒前
3秒前
孙宇完成签到,获得积分10
4秒前
4秒前
rosalieshi完成签到,获得积分0
4秒前
6秒前
7秒前
屠龙带师完成签到,获得积分10
8秒前
毛豆应助吉里巴采纳,获得10
8秒前
8秒前
8秒前
飞羽发布了新的文献求助10
9秒前
嗯嗯嗯完成签到,获得积分10
9秒前
源主儿完成签到,获得积分20
10秒前
成就的夏之完成签到,获得积分10
10秒前
完美世界应助野性的柠檬采纳,获得10
10秒前
wjh应助欢欢欢乐乐乐乐采纳,获得10
10秒前
10秒前
yolo39应助大方的笑萍采纳,获得10
11秒前
脑洞疼应助chloe采纳,获得30
12秒前
雨翮风翎发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
15秒前
升升升呀发布了新的文献求助10
15秒前
Coral369发布了新的文献求助10
17秒前
Hosea发布了新的文献求助10
18秒前
Owen应助dd采纳,获得10
19秒前
刘璇1发布了新的文献求助10
20秒前
Rohee发布了新的文献求助10
21秒前
蓝冰香筱发布了新的文献求助20
24秒前
英姑应助行走的车采纳,获得10
25秒前
我是老大应助雨夜星空采纳,获得10
26秒前
自觉愫关注了科研通微信公众号
26秒前
feezy发布了新的文献求助20
27秒前
28秒前
共享精神应助沐沐1003采纳,获得30
31秒前
SIRT1发布了新的文献求助10
31秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664