Vulnerability detection through machine learning-based fuzzing: A systematic review

模糊测试 计算机科学 脆弱性(计算) 人工智能 机器学习 计算机安全 程序设计语言 软件
作者
Sadegh Bamohabbat Chafjiri,Phil Legg,Jun Hong,Michail‐Antisthenis Tsompanas
出处
期刊:Computers & Security [Elsevier]
卷期号:143: 103903-103903
标识
DOI:10.1016/j.cose.2024.103903
摘要

Modern software and networks underpin our digital society, yet the rapid growth of vulnerabilities that are uncovered within these threaten our cyber security posture. Addressing these issues at scale requires automated proactive approaches that can identify and mitigate these vulnerabilities in a suitable time frame. Fuzzing techniques have emerged as crucial methods to preemptively tackle these risks. However, traditional fuzzing methods encounter various challenges, such as a lack of strategy for deep bug identification, time-intensive bug analysis, quality of inputs, seed scheduling and others. To overcome these challenges, diverse Machine Learning (ML) models and optimisation techniques have been employed, including advanced feature engineering, optimised seed selection, refined predictive/fitness models, and Gradient-based optimisation. Furthermore, the use of ML architectures such as Long Short-Term Memory (LSTM), Generative Adversarial Network (GAN), Sequence-to-Sequence (Seq2Seq), and Generative Randomised Unit (GRU), have demonstrated greater effectiveness within ML-based fuzzing. In this paper, we delve into this paradigm shift, aiming to address fundamental challenges across different ML categories. We survey popular ML categories such as Traditional Machine Learning (TML), Deep Learning (DL), Reinforcement Learning (RL), and Deep Reinforcement Learning (DRL), to investigate their potential for enhancing traditional fuzzing approaches. We explore the respective advantages in each category of ML-based fuzzing, while also analysing the challenges unique to each category. Our work provides a comprehensive survey across the fuzzing domain and how machine learning techniques have been utilised, that we believe will be of use to future researchers in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萝卜睿睿完成签到,获得积分20
刚刚
梅槑完成签到 ,获得积分10
刚刚
Apr9810h完成签到 ,获得积分10
1秒前
华北走地鸡完成签到,获得积分10
1秒前
淡定亦云完成签到 ,获得积分10
1秒前
1秒前
Jasper应助鱼摆摆摆摆采纳,获得10
2秒前
IvanLIu完成签到 ,获得积分10
2秒前
ZhaoCun完成签到,获得积分10
2秒前
风趣秋白完成签到,获得积分10
3秒前
Serendipity发布了新的文献求助10
3秒前
研友_ZeqAxZ完成签到,获得积分10
3秒前
petrichor应助pokemeow采纳,获得10
3秒前
4秒前
英勇的幻露完成签到,获得积分10
4秒前
刘澄伊完成签到,获得积分10
5秒前
神勇初瑶完成签到,获得积分10
5秒前
117318完成签到,获得积分10
5秒前
mnliao完成签到,获得积分10
6秒前
街道办事部完成签到,获得积分10
6秒前
木木完成签到,获得积分10
6秒前
6秒前
William完成签到 ,获得积分10
6秒前
自由与星星完成签到,获得积分10
7秒前
7秒前
koial完成签到 ,获得积分10
7秒前
7秒前
hqn完成签到 ,获得积分10
7秒前
蛋蛋完成签到 ,获得积分20
8秒前
123566完成签到,获得积分10
8秒前
文小杰发布了新的文献求助10
9秒前
酷酷菲音发布了新的文献求助10
9秒前
淡淡觅波发布了新的文献求助30
9秒前
brick2024完成签到,获得积分10
9秒前
偌佟发布了新的文献求助10
10秒前
10秒前
文献啊文献完成签到,获得积分10
10秒前
wqy完成签到 ,获得积分10
10秒前
开心完成签到,获得积分10
11秒前
Gzl完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910