Vulnerability detection through machine learning-based fuzzing: A systematic review

模糊测试 计算机科学 脆弱性(计算) 人工智能 机器学习 计算机安全 程序设计语言 软件
作者
Sadegh Bamohabbat Chafjiri,Phil Legg,Jun Hong,Michail‐Antisthenis Tsompanas
出处
期刊:Computers & Security [Elsevier BV]
卷期号:143: 103903-103903
标识
DOI:10.1016/j.cose.2024.103903
摘要

Modern software and networks underpin our digital society, yet the rapid growth of vulnerabilities that are uncovered within these threaten our cyber security posture. Addressing these issues at scale requires automated proactive approaches that can identify and mitigate these vulnerabilities in a suitable time frame. Fuzzing techniques have emerged as crucial methods to preemptively tackle these risks. However, traditional fuzzing methods encounter various challenges, such as a lack of strategy for deep bug identification, time-intensive bug analysis, quality of inputs, seed scheduling and others. To overcome these challenges, diverse Machine Learning (ML) models and optimisation techniques have been employed, including advanced feature engineering, optimised seed selection, refined predictive/fitness models, and Gradient-based optimisation. Furthermore, the use of ML architectures such as Long Short-Term Memory (LSTM), Generative Adversarial Network (GAN), Sequence-to-Sequence (Seq2Seq), and Generative Randomised Unit (GRU), have demonstrated greater effectiveness within ML-based fuzzing. In this paper, we delve into this paradigm shift, aiming to address fundamental challenges across different ML categories. We survey popular ML categories such as Traditional Machine Learning (TML), Deep Learning (DL), Reinforcement Learning (RL), and Deep Reinforcement Learning (DRL), to investigate their potential for enhancing traditional fuzzing approaches. We explore the respective advantages in each category of ML-based fuzzing, while also analysing the challenges unique to each category. Our work provides a comprehensive survey across the fuzzing domain and how machine learning techniques have been utilised, that we believe will be of use to future researchers in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三椋椋发布了新的文献求助10
刚刚
科研通AI5应助niu采纳,获得10
刚刚
刚刚
1秒前
科研通AI2S应助毛先生采纳,获得10
1秒前
坦率尔蓝完成签到,获得积分20
2秒前
2秒前
畅快的觅风完成签到,获得积分10
2秒前
爆米花应助郑郑采纳,获得10
3秒前
4秒前
干饭虫应助T102892采纳,获得10
4秒前
量子星尘发布了新的文献求助30
5秒前
Orange应助麻瓜采纳,获得10
5秒前
Joyce发布了新的文献求助10
6秒前
guoguo1119发布了新的文献求助10
6秒前
喵呜完成签到,获得积分10
7秒前
北北完成签到,获得积分10
7秒前
gk完成签到,获得积分20
8秒前
8秒前
9秒前
核桃应助slowfloat采纳,获得20
9秒前
JamesPei应助B站萧亚轩采纳,获得10
10秒前
搞怪雁风完成签到,获得积分10
10秒前
刘茗元发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
11秒前
上官若男应助wzc采纳,获得10
12秒前
arzw完成签到,获得积分10
12秒前
传统的妖妖完成签到,获得积分20
14秒前
脑洞疼应助why采纳,获得10
14秒前
搞怪雁风发布了新的文献求助10
15秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
15秒前
一叶知秋应助杜晓雯采纳,获得10
15秒前
科研通AI5应助凌兰采纳,获得30
16秒前
16秒前
16秒前
Akim应助潘小蓝采纳,获得10
16秒前
未晞发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197