Role of the Glymphatic System in Alzheimer’s Disease and Treatment Approaches: A Narrative Review

淋巴系统 医学 疾病 神经科学 水通道蛋白4 发病机制 病理 脑脊液 心理学
作者
Megha Madhu,Ojas Balaji,Venkataramana Kandi,Jayashankar CA,Ganaraja V Harikrishna,Nirosha Metta,Vamsi Krishna Mudamanchu,Bangalore G. Sanjay,Praful Bhupathiraju
出处
期刊:Cureus [Cureus, Inc.]
标识
DOI:10.7759/cureus.63448
摘要

Currently, there is unavailability of disease-modifying medication for Alzheimer's disease (AD), a debilitating neurological disorder. The pathogenesis of AD appears to be complex and could be influenced by the glymphatic system present in the central nervous system (CNS). Amyloid-beta (Aβ) and other metabolic wastes are eliminated from the brain interstitium by the glymphatic system, which encompasses perivascular channels and astroglial cells. Dysfunction of the glymphatic system, which could occur due to decreased aquaporin 4 (AQP4) expression, aging-related alterations in the human brain, and sleep disruptions, may contribute to the pathogenesis of AD and also accelerate the development of AD by causing a buildup of harmful proteins like Aβ. Promising approaches have been examined for reducing AD pathology, including non-pharmacological therapies that target glymphatic function, like exercise and sleep regulation. In addition, preclinical research has also demonstrated the therapeutic potential of pharmaceutical approaches targeted at augmenting AQP4-mediated glymphatic flow. To identify the precise processes driving glymphatic dysfunction in AD and to find new treatment targets, more research is required. Innovative diagnostic and treatment approaches for AD could be made possible by techniques such as dynamic contrast-enhanced MRI, which promises to evaluate glymphatic function in neurodegenerative diseases. Treatment options for AD and other neurodegenerative diseases may be improved by comprehending and utilizing the glymphatic system's function in preserving brain homeostasis and targeting the mechanisms involved in glymphatic functioning. This review intends to enhance the understanding of the complex link between AD and the glymphatic system and focuses on the function of AQP4 channels in promoting waste clearance and fluid exchange.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
5秒前
5秒前
浮云完成签到 ,获得积分10
6秒前
李健的小迷弟应助Alaskan采纳,获得10
8秒前
8秒前
8秒前
穆紫应助Rita采纳,获得10
8秒前
8秒前
9秒前
9秒前
cc应助英勇的鼠标采纳,获得10
10秒前
一二三发布了新的文献求助10
11秒前
搜集达人应助鲤鱼大炮采纳,获得10
13秒前
13秒前
jianjiao发布了新的文献求助20
13秒前
饺子发布了新的文献求助10
14秒前
you完成签到,获得积分10
14秒前
十月完成签到,获得积分10
15秒前
15秒前
汉堡包应助世界和平采纳,获得30
16秒前
周凡淇发布了新的文献求助30
17秒前
17秒前
17秒前
追寻的怜容完成签到,获得积分10
18秒前
寒冷妙梦发布了新的文献求助10
18秒前
hahaha发布了新的文献求助10
18秒前
共享精神应助周俊俊采纳,获得10
19秒前
爆米花应助南烟采纳,获得10
19秒前
20秒前
852应助啦啦啦大大大雷采纳,获得10
22秒前
田様应助多情的涵易采纳,获得10
23秒前
23秒前
23秒前
茜134发布了新的文献求助20
23秒前
华仔应助哈好好哈哈好采纳,获得10
24秒前
Hello应助一二三采纳,获得10
24秒前
穆紫应助无辜忆寒采纳,获得10
24秒前
饺子完成签到,获得积分10
25秒前
冷傲的元容关注了科研通微信公众号
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328