Semi-supervised Few-shot Classification with Multi-task Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 化学 管理 有机化学 经济
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不太想学习完成签到 ,获得积分10
刚刚
刚刚
Bowen发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI6应助困困困困采纳,获得30
1秒前
VDC发布了新的文献求助10
1秒前
脑洞疼应助Gary采纳,获得10
1秒前
1秒前
2秒前
momucy发布了新的文献求助10
2秒前
dahuahau完成签到,获得积分10
3秒前
3秒前
Klenows发布了新的文献求助10
4秒前
笨笨秋白完成签到,获得积分10
4秒前
echoyao发布了新的文献求助10
4秒前
QhL完成签到,获得积分10
4秒前
4秒前
情怀应助maodoujie采纳,获得10
4秒前
Auh发布了新的文献求助10
4秒前
1112关注了科研通微信公众号
5秒前
大模型应助ccc采纳,获得10
5秒前
tuyfytjt发布了新的文献求助10
6秒前
6秒前
va发布了新的文献求助10
6秒前
勤奋高丽发布了新的文献求助10
6秒前
qing1245发布了新的文献求助10
6秒前
笨笨秋白发布了新的文献求助10
6秒前
Owen应助xzp采纳,获得10
7秒前
7秒前
YU发布了新的文献求助10
7秒前
7秒前
7秒前
JABBA发布了新的文献求助10
8秒前
CipherSage应助hjjjjj1采纳,获得10
8秒前
大力云朵发布了新的文献求助10
8秒前
含糊的幼旋完成签到,获得积分10
8秒前
丘比特应助火星上大白菜采纳,获得10
8秒前
zhang完成签到,获得积分10
8秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562