Semi-Supervised Few-Shot Classification With Multitask Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 化学 管理 有机化学 经济
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴歪歪发布了新的文献求助10
刚刚
干净语蓉发布了新的文献求助10
刚刚
浪子发布了新的文献求助10
刚刚
浅池星完成签到 ,获得积分10
刚刚
1秒前
2秒前
科研通AI2S应助高小明采纳,获得10
2秒前
2秒前
果粒橙应助元谷雪采纳,获得10
3秒前
xx发布了新的文献求助20
4秒前
4秒前
科研通AI6应助每天都困采纳,获得10
4秒前
salute_sang完成签到,获得积分10
4秒前
5秒前
casaboy发布了新的文献求助20
5秒前
FashionBoy应助悲伤汉堡包采纳,获得10
6秒前
情怀应助Nathan采纳,获得10
6秒前
7秒前
孔德颍发布了新的文献求助10
7秒前
8秒前
wangli发布了新的文献求助10
8秒前
8秒前
Messi发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
彭于晏应助浪子采纳,获得10
10秒前
10秒前
田様应助欣慰雪巧采纳,获得10
10秒前
研友_5476B5发布了新的文献求助30
11秒前
科研通AI6应助刘一帆采纳,获得10
11秒前
烟花应助xiaowang采纳,获得10
11秒前
11秒前
rd发布了新的文献求助10
12秒前
张原发布了新的文献求助10
13秒前
研友_VZG54L发布了新的文献求助10
13秒前
13秒前
14秒前
pkaff发布了新的文献求助10
14秒前
共享精神应助zlf采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597673
求助须知:如何正确求助?哪些是违规求助? 4683190
关于积分的说明 14828741
捐赠科研通 4661266
什么是DOI,文献DOI怎么找? 2536776
邀请新用户注册赠送积分活动 1504368
关于科研通互助平台的介绍 1470215