Semi-Supervised Few-Shot Classification With Multitask Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 经济 有机化学 化学 管理
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
manru完成签到,获得积分10
刚刚
lxl完成签到,获得积分10
2秒前
2秒前
柳行天完成签到 ,获得积分10
2秒前
xixi发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
黄姗姗完成签到,获得积分10
5秒前
小二郎应助霁故采纳,获得10
5秒前
小太阳完成签到,获得积分10
6秒前
6秒前
TMAC完成签到,获得积分10
6秒前
ding应助别说话采纳,获得10
6秒前
汉堡包应助吃人陈采纳,获得30
7秒前
科研通AI6应助ccy采纳,获得10
7秒前
7秒前
乐乐应助Chou采纳,获得10
7秒前
Moislad发布了新的文献求助10
7秒前
8秒前
丰知然应助文献荒采纳,获得10
8秒前
8秒前
可爱香芦发布了新的文献求助10
9秒前
11秒前
diegomht完成签到,获得积分10
11秒前
asasd发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
刘群发布了新的文献求助30
12秒前
12秒前
tigger发布了新的文献求助10
13秒前
teriteri完成签到,获得积分10
13秒前
14秒前
cyh发布了新的文献求助10
15秒前
15秒前
15秒前
浮游应助老子就是杀猪的采纳,获得10
16秒前
包容乐荷完成签到,获得积分10
17秒前
在水一方应助小太阳采纳,获得30
17秒前
专一的小馒头完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577756
求助须知:如何正确求助?哪些是违规求助? 4662789
关于积分的说明 14743583
捐赠科研通 4603478
什么是DOI,文献DOI怎么找? 2526478
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465573