Semi-Supervised Few-Shot Classification With Multitask Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 经济 有机化学 化学 管理
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路遥知马力完成签到,获得积分10
1秒前
2秒前
林子发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
香蕉觅云应助海比天蓝采纳,获得10
3秒前
充电宝应助海比天蓝采纳,获得10
4秒前
4秒前
yfy_fairy发布了新的文献求助10
4秒前
风时因絮发布了新的文献求助10
6秒前
6秒前
xixi完成签到 ,获得积分10
7秒前
7秒前
7秒前
zhou完成签到 ,获得积分10
7秒前
7秒前
研友_VZG7GZ应助。.。采纳,获得10
7秒前
kk雯发布了新的文献求助10
8秒前
坦率宛凝完成签到,获得积分10
8秒前
醉翁完成签到,获得积分10
8秒前
9秒前
左一酱发布了新的文献求助20
9秒前
科研巨额发布了新的文献求助10
10秒前
颜九完成签到,获得积分10
10秒前
10秒前
dynamoo应助666采纳,获得10
11秒前
11秒前
卷卷发布了新的文献求助10
11秒前
科研通AI6应助喵喵采纳,获得10
11秒前
11秒前
AAA院士杰青批发完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
一行发布了新的文献求助10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
空勒应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175