Semi-Supervised Few-Shot Classification With Multitask Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 化学 管理 有机化学 经济
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助隐形的若灵采纳,获得10
刚刚
量子星尘发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
yvonne完成签到,获得积分10
1秒前
Sanqi发布了新的文献求助10
2秒前
俭朴的向薇完成签到,获得积分10
2秒前
SciGPT应助森森采纳,获得10
2秒前
wuxifan完成签到,获得积分10
3秒前
搜集达人应助清脆亿先采纳,获得10
3秒前
4秒前
杨阳洋完成签到 ,获得积分10
5秒前
傻傻的磬完成签到 ,获得积分10
7秒前
橘颂完成签到,获得积分10
7秒前
8秒前
务实文涛完成签到,获得积分10
8秒前
打打应助科研通管家采纳,获得10
8秒前
张a应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
非雨非晴完成签到,获得积分10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
张a应助科研通管家采纳,获得10
9秒前
monly应助科研通管家采纳,获得10
9秒前
9秒前
张a应助科研通管家采纳,获得10
9秒前
Polling完成签到,获得积分10
9秒前
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
张a应助科研通管家采纳,获得10
9秒前
monly应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728665
求助须知:如何正确求助?哪些是违规求助? 5314143
关于积分的说明 15314925
捐赠科研通 4875842
什么是DOI,文献DOI怎么找? 2618989
邀请新用户注册赠送积分活动 1568649
关于科研通互助平台的介绍 1525191