Semi-supervised Few-shot Classification with Multi-task Learning and Iterative Label Correction

计算机科学 人工智能 任务(项目管理) 弹丸 机器学习 模式识别(心理学) 经济 有机化学 化学 管理
作者
Hong Ji,Zhi Gao,Yao Lu,Ziyao Li,Boan Chen,Yanzhang Li,Jun Zhu,Chao Wang,Zhi‐Cheng Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3401071
摘要

Few-shot learning enables rapid generalization from extremely limited training examples. While previous efforts have utilized meta-learning or data augmentation methods to mitigate the problem of data scarcity, such approaches may struggle to maintain robustness and generalize effectively due to overfitting and noise sensitivity. In this paper, we propose a novel approach, the Semi-Supervised Label Correction method for Few-Shot Learning (SSLC-FSL), which leverages the data distribution of readily available and easily obtainable unlabeled data. SSLC-FSL iteratively corrects the labels of testing samples with alternating steps of pseudo-labeling and sample selection. The objective of pseudo-labeling is to repurpose graph-based semi-supervised learning for joint prediction of the entire testing set. We then introduce a Modulation Selection Network (MSN) to rank testing samples by learning with noisy labels. The training set is expanded by selecting confident pseudo-labeled samples. In the MSN, a Modulation Aggregation Layer is designed to encode support class information into each testing sample, thereby highlighting target category features and mitigating the negative impact of incorrect labels. The iterative label correction process is repeated until all testing samples are recalled to the expanded support set. To boost the SSLC-FSL algorithm, we pre-train a feature extractor to produce general-purpose representations. Particularly, we investigate two types of auxiliary tasks and their collaborative learning to acquire transferable visual information via an end-to-end multi-task learning model. Our SSLC-FSL outperforms current state-of-the-art methods in any shot and all data settings, with up to +27.74% on standard remote sensing benchmarks and +5.70% on standard natural scene benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
susu完成签到 ,获得积分10
1秒前
整齐千柳发布了新的文献求助10
1秒前
白昼流星发布了新的文献求助10
2秒前
2秒前
FashionBoy应助结实的冰露采纳,获得10
2秒前
小张完成签到,获得积分10
2秒前
miaomiao发布了新的文献求助10
3秒前
不二佳完成签到 ,获得积分10
4秒前
5秒前
5秒前
零零完成签到 ,获得积分10
5秒前
6秒前
弹指一挥间完成签到,获得积分10
6秒前
王新颖应助jingjingyang采纳,获得10
7秒前
高高听莲完成签到 ,获得积分10
7秒前
浮游应助小张采纳,获得10
8秒前
木槿完成签到,获得积分10
8秒前
柚子完成签到 ,获得积分10
8秒前
彭于晏应助汪小楠吖采纳,获得10
9秒前
浮华完成签到,获得积分10
12秒前
sheep发布了新的文献求助10
12秒前
小二郎应助123采纳,获得10
12秒前
壮观的雨柏完成签到,获得积分10
13秒前
清漪完成签到,获得积分10
13秒前
17秒前
17秒前
18秒前
19秒前
风清扬应助hahha采纳,获得30
19秒前
Anima应助小刘采纳,获得10
19秒前
20秒前
LLLxy完成签到,获得积分20
21秒前
Ava应助愤怒的小兔子采纳,获得10
21秒前
22秒前
22秒前
汪小楠吖发布了新的文献求助10
22秒前
23秒前
SciGPT应助汪金采纳,获得10
23秒前
在水一方应助BurgerKing采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288713
求助须知:如何正确求助?哪些是违规求助? 4440504
关于积分的说明 13824786
捐赠科研通 4322792
什么是DOI,文献DOI怎么找? 2372749
邀请新用户注册赠送积分活动 1368214
关于科研通互助平台的介绍 1332093