信号肽
解淀粉芽孢杆菌
信号肽酶
分泌物
蛋白质前体
分泌途径
分泌蛋白
蛋白酶
生物化学
细胞生物学
绿色荧光蛋白
生物
化学
酶
重组DNA
基因
发酵
内质网
高尔基体
作者
Dengke Li,Yian Cai,Jiejie Guo,Y. Liu,Fuping Lu,Qinggang Li,Yexue Liu,Yu Li
标识
DOI:10.1016/j.ijbiomac.2024.132166
摘要
Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.
科研通智能强力驱动
Strongly Powered by AbleSci AI