已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A combined density functional theory and microkinetics simulations study of electrochemical CO2 reduction on Cu8/SnO2(110): The crucial role of hydrogen coverage

密度泛函理论 材料科学 电化学 选择性 吸附 空位缺陷 电极 催化作用 化学物理 无机化学 计算化学 物理化学 结晶学 化学 生物化学 有机化学
作者
Zhaochun Liu,Rozemarijn D.E. Krösschell,Ivo A. W. Filot,Emiel J. M. Hensen
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:493: 144409-144409 被引量:10
标识
DOI:10.1016/j.electacta.2024.144409
摘要

The electrochemical reduction of CO2 (eCO2R) is a promising approach for converting CO2 into valuable chemicals and fuels using renewable energy sources. We investigated the mechanism of eCO2R for a small Cu8 cluster placed on SnO2 containing O vacancies using density functional theory and predicted current density and selectivity by microkinetics simulations within the computational hydrogen electrode model. Low and high H coverages were modeled by Cu8/SnO2-x and Cu8H6/SnO2-x models, using statistical methods to identify their most stable structures. Different CO2 adsorption modes on Cu8/SnO2-x and Cu8H6/SnO2-x surface models, all containing an O vacancy, resulted in distinct reaction pathways, leading to either HCOOH or CO. The preferred formation of HCOOH occurred upon CO2 adsorption on an O vacancy on the Cu8H6/SnO2-x surface, followed by sequential hydrogenation to HCOO and HCOOH. Adsorption of CO2 on Cu8/SnO2-x opened a facile pathway to CO. Electronic structure analysis revealed that differences in charge donation of Cu to the antibonding orbitals of CO2 can explain the predicted selectivity differences. The preferred adsorption mode of CO2 is bidentate at the Cu-SnO2-x interface. Our findings emphasize the role of H coverage on Cu on the selectivity of eCO2R for Cu/SnOx catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助laifeihong采纳,获得10
3秒前
xinbadake完成签到,获得积分10
4秒前
5秒前
5秒前
wdw2501完成签到,获得积分10
5秒前
鳗鱼又槐完成签到,获得积分20
6秒前
left_right发布了新的文献求助10
6秒前
赘婿应助荣一采纳,获得10
7秒前
peashooter发布了新的文献求助10
8秒前
soda完成签到,获得积分10
10秒前
12秒前
left_right完成签到,获得积分10
12秒前
12秒前
RJ完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
荟菁发布了新的文献求助10
16秒前
算命的完成签到,获得积分10
17秒前
牛马学生发布了新的文献求助10
17秒前
望空发布了新的文献求助10
17秒前
yu发布了新的文献求助10
19秒前
丘比特应助Sg采纳,获得10
20秒前
24秒前
Owen应助刻苦迎波采纳,获得10
24秒前
在水一方应助四夕水窖采纳,获得10
24秒前
Fancy完成签到 ,获得积分10
28秒前
29秒前
30秒前
30秒前
缓慢凤凰发布了新的文献求助10
31秒前
春日防卫队Fire完成签到,获得积分10
32秒前
34秒前
虾乐完成签到,获得积分10
34秒前
34秒前
缓慢幻天完成签到,获得积分10
35秒前
浮浮世世应助科研通管家采纳,获得30
36秒前
CipherSage应助科研通管家采纳,获得30
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得30
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634038
求助须知:如何正确求助?哪些是违规求助? 4730159
关于积分的说明 14987606
捐赠科研通 4791840
什么是DOI,文献DOI怎么找? 2559081
邀请新用户注册赠送积分活动 1519555
关于科研通互助平台的介绍 1479740