已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A combined density functional theory and microkinetics simulations study of electrochemical CO2 reduction on Cu8/SnO2(110): The crucial role of hydrogen coverage

密度泛函理论 材料科学 电化学 选择性 吸附 空位缺陷 电极 催化作用 化学物理 无机化学 计算化学 物理化学 结晶学 化学 生物化学 有机化学
作者
Zhaochun Liu,Rozemarijn D.E. Krösschell,Ivo A. W. Filot,Emiel J. M. Hensen
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:493: 144409-144409 被引量:10
标识
DOI:10.1016/j.electacta.2024.144409
摘要

The electrochemical reduction of CO2 (eCO2R) is a promising approach for converting CO2 into valuable chemicals and fuels using renewable energy sources. We investigated the mechanism of eCO2R for a small Cu8 cluster placed on SnO2 containing O vacancies using density functional theory and predicted current density and selectivity by microkinetics simulations within the computational hydrogen electrode model. Low and high H coverages were modeled by Cu8/SnO2-x and Cu8H6/SnO2-x models, using statistical methods to identify their most stable structures. Different CO2 adsorption modes on Cu8/SnO2-x and Cu8H6/SnO2-x surface models, all containing an O vacancy, resulted in distinct reaction pathways, leading to either HCOOH or CO. The preferred formation of HCOOH occurred upon CO2 adsorption on an O vacancy on the Cu8H6/SnO2-x surface, followed by sequential hydrogenation to HCOO and HCOOH. Adsorption of CO2 on Cu8/SnO2-x opened a facile pathway to CO. Electronic structure analysis revealed that differences in charge donation of Cu to the antibonding orbitals of CO2 can explain the predicted selectivity differences. The preferred adsorption mode of CO2 is bidentate at the Cu-SnO2-x interface. Our findings emphasize the role of H coverage on Cu on the selectivity of eCO2R for Cu/SnOx catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JasonYang完成签到,获得积分10
5秒前
汉堡包应助xiliii采纳,获得10
6秒前
6秒前
6秒前
阔达的衣完成签到 ,获得积分10
9秒前
10秒前
12秒前
汤姆发布了新的文献求助10
12秒前
小衫生发布了新的文献求助10
13秒前
lo发布了新的文献求助30
16秒前
16秒前
17秒前
张志超发布了新的文献求助10
18秒前
19秒前
Repine完成签到,获得积分20
20秒前
火星上的书桃完成签到,获得积分10
20秒前
小圆圈发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
25秒前
季烬给季烬的求助进行了留言
26秒前
小衫生完成签到,获得积分10
26秒前
在水一方应助happy采纳,获得10
27秒前
搜集达人应助麦客采纳,获得10
27秒前
jjf发布了新的文献求助10
29秒前
虾乐完成签到,获得积分10
29秒前
Hello应助缙云武松采纳,获得10
29秒前
科研小菜完成签到 ,获得积分10
32秒前
包傲柔完成签到,获得积分10
33秒前
所所应助宇文宛菡采纳,获得10
35秒前
wch123发布了新的文献求助10
37秒前
共享精神应助lo采纳,获得10
37秒前
所所应助彭院士采纳,获得10
37秒前
37秒前
38秒前
40秒前
麦客发布了新的文献求助10
41秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606375
求助须知:如何正确求助?哪些是违规求助? 4690817
关于积分的说明 14865558
捐赠科研通 4704972
什么是DOI,文献DOI怎么找? 2542593
邀请新用户注册赠送积分活动 1508074
关于科研通互助平台的介绍 1472245