Research on machine learning hybrid framework by coupling grid-based runoff generation model and runoff process vectorization for flood forecasting

地表径流 过程(计算) 大洪水 网格 矢量化(数学) 计算机科学 环境科学 地理 并行计算 程序设计语言 生态学 考古 大地测量学 生物
作者
Chengshuai Liu,Chengshuai Liu,Chengshuai Liu,Wenzhong Li,Wenzhong Li,Chengshuai Liu,Wenzhong Li
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:364: 121466-121466
标识
DOI:10.1016/j.jenvman.2024.121466
摘要

One of the important non-engineering measures for flood forecasting and disaster reduction in watersheds is the application of machine learning flood prediction models, with Long Short-Term Memory (LSTM) being one of the most representative time series prediction models. However, the LSTM model has issues of underestimating peak flows and poor robustness in flood forecasting applications. Therefore, based on a thorough analysis of complex underlying surface attributes, this study proposes a framework for distinguishing runoff models and integrates a Grid-based Runoff Generation Model (GRGM). Simultaneously considering the time series characteristics of runoff processes, including rising, peak, and recession, a runoff process vectorization (RPV) method is proposed. In this study, a hybrid deep learning flood forecasting framework, GRGM-RPV-LSTM, is constructed by coupling the GRGM, RPV, and LSTM neural network models. Taking the Jialu River in the Zhongmu station control basin as an example, the model is validated using 18 instances of measured floods and compared with the LSTM and GRGM-LSTM models. The study shows that the GRGM model has a relative error and average coefficient of determination for simulating runoff of 8.41% and 0.976, respectively, indicating that considering the spatial distribution of runoff patterns leads to more accurate runoff calculations. Under the same lead time conditions, the GRGM-RPV-LSTM hybrid forecasting model has a Nash efficiency coefficient greater than 0.9, demonstrating better simulation performance compared to the GRGM-LSTM and LSTM models. As the lead time increases, the GRGM-RPV-LSTM model provides more accurate peak flow predictions and exhibits better robustness. The research findings can provide scientific basis for coordinated management of flood control and disaster reduction in watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逢场作戱__完成签到 ,获得积分10
1秒前
不再挨训完成签到 ,获得积分10
8秒前
猪猪hero发布了新的文献求助10
9秒前
如履平川完成签到 ,获得积分10
9秒前
二则完成签到 ,获得积分10
9秒前
可靠的大侠完成签到 ,获得积分10
10秒前
南浔完成签到 ,获得积分10
12秒前
15秒前
Wei完成签到 ,获得积分10
22秒前
小林神完成签到,获得积分10
23秒前
丫丫完成签到 ,获得积分10
28秒前
胖虎完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
Servant2023完成签到,获得积分10
31秒前
自觉石头完成签到 ,获得积分10
32秒前
mike2012完成签到 ,获得积分10
36秒前
乐观鸣凤完成签到,获得积分10
39秒前
45秒前
吃小孩的妖怪完成签到 ,获得积分10
46秒前
CyberHamster完成签到,获得积分10
50秒前
舒适的藏花完成签到 ,获得积分10
54秒前
学海行舟完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
tangyangzju完成签到,获得积分10
1分钟前
make217完成签到 ,获得积分10
1分钟前
牛仔完成签到 ,获得积分10
1分钟前
leotao完成签到,获得积分10
1分钟前
Perrylin718完成签到,获得积分10
1分钟前
ff完成签到,获得积分10
1分钟前
whitepiece完成签到,获得积分10
1分钟前
1分钟前
万默完成签到 ,获得积分10
1分钟前
欢呼妙菱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
真水无香123完成签到,获得积分10
1分钟前
HRBJ完成签到,获得积分10
1分钟前
1分钟前
背书强完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008711
求助须知:如何正确求助?哪些是违规求助? 3548365
关于积分的说明 11298818
捐赠科研通 3283040
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218