已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on machine learning hybrid framework by coupling grid-based runoff generation model and runoff process vectorization for flood forecasting

地表径流 过程(计算) 大洪水 网格 矢量化(数学) 计算机科学 环境科学 地理 并行计算 程序设计语言 生态学 考古 大地测量学 生物
作者
Chengshuai Liu,Chengshuai Liu,Chengshuai Liu,Wenzhong Li,Wenzhong Li,Chengshuai Liu,Wenzhong Li
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:364: 121466-121466
标识
DOI:10.1016/j.jenvman.2024.121466
摘要

One of the important non-engineering measures for flood forecasting and disaster reduction in watersheds is the application of machine learning flood prediction models, with Long Short-Term Memory (LSTM) being one of the most representative time series prediction models. However, the LSTM model has issues of underestimating peak flows and poor robustness in flood forecasting applications. Therefore, based on a thorough analysis of complex underlying surface attributes, this study proposes a framework for distinguishing runoff models and integrates a Grid-based Runoff Generation Model (GRGM). Simultaneously considering the time series characteristics of runoff processes, including rising, peak, and recession, a runoff process vectorization (RPV) method is proposed. In this study, a hybrid deep learning flood forecasting framework, GRGM-RPV-LSTM, is constructed by coupling the GRGM, RPV, and LSTM neural network models. Taking the Jialu River in the Zhongmu station control basin as an example, the model is validated using 18 instances of measured floods and compared with the LSTM and GRGM-LSTM models. The study shows that the GRGM model has a relative error and average coefficient of determination for simulating runoff of 8.41% and 0.976, respectively, indicating that considering the spatial distribution of runoff patterns leads to more accurate runoff calculations. Under the same lead time conditions, the GRGM-RPV-LSTM hybrid forecasting model has a Nash efficiency coefficient greater than 0.9, demonstrating better simulation performance compared to the GRGM-LSTM and LSTM models. As the lead time increases, the GRGM-RPV-LSTM model provides more accurate peak flow predictions and exhibits better robustness. The research findings can provide scientific basis for coordinated management of flood control and disaster reduction in watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战神林北完成签到,获得积分10
刚刚
刚刚
打鬼忍者完成签到 ,获得积分10
3秒前
Charlie完成签到,获得积分10
5秒前
拼搏小丸子完成签到 ,获得积分10
6秒前
小小鱼完成签到,获得积分10
7秒前
直率的青寒完成签到,获得积分10
7秒前
无尘完成签到 ,获得积分10
7秒前
缓慢的灵枫完成签到,获得积分10
7秒前
咸鱼的艺术完成签到 ,获得积分10
9秒前
9秒前
完美世界应助穿裤子的云采纳,获得10
10秒前
别找了睡觉吧完成签到 ,获得积分10
11秒前
你好好好完成签到,获得积分10
12秒前
13秒前
涵Allen完成签到 ,获得积分10
13秒前
乐乐应助天才幸运鱼采纳,获得10
13秒前
Dlan完成签到,获得积分10
15秒前
15秒前
15秒前
cyf完成签到 ,获得积分10
16秒前
CR完成签到 ,获得积分10
17秒前
小短腿飞行员完成签到,获得积分20
17秒前
18秒前
feiCheung完成签到 ,获得积分10
18秒前
甜甜的以筠完成签到 ,获得积分10
19秒前
文艺沛文发布了新的文献求助10
20秒前
marska完成签到,获得积分10
20秒前
SciGPT应助背后绝音采纳,获得10
22秒前
美满的若风完成签到 ,获得积分10
22秒前
郴欧尼完成签到 ,获得积分10
22秒前
Aloha完成签到 ,获得积分10
22秒前
24秒前
超级小熊猫完成签到 ,获得积分10
25秒前
Su完成签到 ,获得积分10
26秒前
24完成签到,获得积分10
26秒前
狂野醉柳完成签到 ,获得积分10
27秒前
文艺沛文完成签到,获得积分20
28秒前
w1x2123完成签到,获得积分10
28秒前
balala完成签到 ,获得积分10
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142499
求助须知:如何正确求助?哪些是违规求助? 2793418
关于积分的说明 7806563
捐赠科研通 2449664
什么是DOI,文献DOI怎么找? 1303383
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309

今日热心研友

清脆松
4
ccm
30
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10