Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
foreve1完成签到,获得积分10
刚刚
山鲁佐德完成签到,获得积分10
1秒前
自觉画笔完成签到 ,获得积分10
4秒前
领导范儿应助wzs采纳,获得10
4秒前
研友_5Z4ZA5完成签到,获得积分10
4秒前
4秒前
敏感元正完成签到,获得积分10
4秒前
迪迦奥特曼完成签到,获得积分10
5秒前
雷九万班完成签到 ,获得积分10
5秒前
523完成签到,获得积分10
5秒前
yugongjie完成签到 ,获得积分10
7秒前
耍酷蛋挞完成签到 ,获得积分10
9秒前
sunny202021完成签到 ,获得积分10
10秒前
公西翠萱完成签到,获得积分10
10秒前
Dora完成签到,获得积分10
11秒前
111完成签到 ,获得积分10
12秒前
脱壳金蝉完成签到,获得积分10
14秒前
雨雨雨雨雨文完成签到 ,获得积分10
14秒前
Echo725完成签到,获得积分10
15秒前
Zhang完成签到,获得积分10
16秒前
16秒前
蓝颜完成签到,获得积分10
17秒前
yuancw完成签到 ,获得积分10
19秒前
bear完成签到,获得积分10
19秒前
爆米花应助柚子茶采纳,获得10
19秒前
wsr完成签到,获得积分10
20秒前
老张完成签到,获得积分10
21秒前
JYY完成签到 ,获得积分10
21秒前
bear发布了新的文献求助10
22秒前
SDY完成签到 ,获得积分10
23秒前
-Me完成签到 ,获得积分10
23秒前
香蕉觅云应助左丘冥采纳,获得10
25秒前
大卫在分享完成签到,获得积分0
25秒前
unfeeling8完成签到 ,获得积分10
26秒前
28秒前
干净的向真完成签到,获得积分10
29秒前
29秒前
30秒前
土土发布了新的文献求助10
31秒前
葫芦芦芦完成签到 ,获得积分10
31秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793786
关于积分的说明 7807358
捐赠科研通 2450052
什么是DOI,文献DOI怎么找? 1303590
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350