Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
baihehuakai发布了新的文献求助10
2秒前
2秒前
山复尔尔完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
vv的平行宇宙完成签到,获得积分10
3秒前
YWR完成签到,获得积分10
3秒前
复杂惜霜完成签到,获得积分20
3秒前
4秒前
Ch_7发布了新的文献求助10
4秒前
福路完成签到 ,获得积分10
4秒前
4秒前
JamesPei应助奋斗水香采纳,获得10
4秒前
定仙游完成签到,获得积分10
5秒前
5秒前
在这无人的城堡肆无忌惮的奔跑完成签到,获得积分0
5秒前
陶醉清完成签到,获得积分10
5秒前
风中的绣连完成签到,获得积分10
6秒前
华仔应助要减肥的chao采纳,获得10
6秒前
CTT完成签到,获得积分10
6秒前
7秒前
鹂鹂复霖霖完成签到,获得积分10
7秒前
秀丽绿真完成签到,获得积分10
7秒前
7秒前
小雨大树完成签到,获得积分10
7秒前
Harry完成签到,获得积分0
8秒前
量子星尘发布了新的文献求助10
8秒前
上官若男应助光亮的立果采纳,获得10
8秒前
qvqtttttt完成签到,获得积分10
8秒前
念心发布了新的文献求助10
9秒前
风趣的鸡翅完成签到,获得积分10
9秒前
9秒前
TONG发布了新的文献求助10
9秒前
研友_VZG7GZ应助七哒蹦采纳,获得10
10秒前
桐桐应助Nn采纳,获得10
10秒前
甜甜球发布了新的文献求助10
10秒前
Three完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665044
求助须知:如何正确求助?哪些是违规求助? 4874526
关于积分的说明 15111251
捐赠科研通 4824178
什么是DOI,文献DOI怎么找? 2582656
邀请新用户注册赠送积分活动 1536612
关于科研通互助平台的介绍 1495236