Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier BV]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到,获得积分10
刚刚
刚刚
木小夕发布了新的文献求助10
刚刚
呼呼呼完成签到,获得积分10
刚刚
芽衣发布了新的文献求助10
1秒前
YUNWU发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
青子完成签到,获得积分10
1秒前
2秒前
隐形曼青应助露亮采纳,获得10
2秒前
2秒前
完美世界应助towerman采纳,获得10
2秒前
3秒前
机灵柚子应助xiaoxi采纳,获得20
3秒前
科研小白发布了新的文献求助10
4秒前
硬嗑苹果的花生完成签到,获得积分10
4秒前
小小完成签到 ,获得积分10
5秒前
cdercder应助喔喔佳佳采纳,获得10
5秒前
倪吉旭发布了新的文献求助10
6秒前
小朱发布了新的文献求助10
6秒前
YXC发布了新的文献求助10
6秒前
暴躁的雁易应助后知后觉采纳,获得30
6秒前
ludwig完成签到,获得积分10
6秒前
暴躁的雁易应助后知后觉采纳,获得30
6秒前
可爱的函函应助后知后觉采纳,获得30
6秒前
zf完成签到,获得积分10
6秒前
搜集达人应助Silence采纳,获得10
7秒前
珈蓝发布了新的文献求助10
7秒前
zhizhi发布了新的文献求助10
7秒前
7秒前
无奈的又晴完成签到,获得积分10
8秒前
zhzzhz完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
田様应助AAA采纳,获得30
12秒前
ruann完成签到 ,获得积分10
12秒前
光亮的小海豚完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774155
求助须知:如何正确求助?哪些是违规求助? 3319812
关于积分的说明 10197154
捐赠科研通 3034404
什么是DOI,文献DOI怎么找? 1665015
邀请新用户注册赠送积分活动 796485
科研通“疑难数据库(出版商)”最低求助积分说明 757510