亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier BV]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maxiangyu完成签到 ,获得积分10
1秒前
酷波er应助HZY采纳,获得10
3秒前
8秒前
呜呜吴发布了新的文献求助30
8秒前
9秒前
14秒前
科研通AI6应助呜呜吴采纳,获得10
16秒前
彭于晏应助Yan1961采纳,获得10
17秒前
欣喜宛亦完成签到 ,获得积分10
18秒前
FashionBoy应助dllneu采纳,获得10
19秒前
科研通AI2S应助宋佳珍采纳,获得10
22秒前
25秒前
28秒前
30秒前
Yan1961发布了新的文献求助10
31秒前
明亮的代灵完成签到 ,获得积分10
32秒前
雨下听风发布了新的文献求助10
35秒前
乐乐应助Yan1961采纳,获得10
37秒前
42秒前
48秒前
55秒前
57秒前
hjy发布了新的文献求助10
1分钟前
Yan1961发布了新的文献求助10
1分钟前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
李爱国应助雨下听风采纳,获得10
1分钟前
传奇3应助谦让的思枫采纳,获得10
1分钟前
HUO完成签到 ,获得积分10
1分钟前
zs完成签到 ,获得积分10
1分钟前
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
追寻元菱应助科研通管家采纳,获得10
1分钟前
Gideon完成签到,获得积分10
1分钟前
HZY发布了新的文献求助10
1分钟前
科研通AI6应助窝恁叠采纳,获得10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232369
求助须知:如何正确求助?哪些是违规求助? 4401711
关于积分的说明 13699246
捐赠科研通 4268071
什么是DOI,文献DOI怎么找? 2342269
邀请新用户注册赠送积分活动 1339354
关于科研通互助平台的介绍 1295951