Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团结友爱发布了新的文献求助10
1秒前
盐烤香鱼完成签到,获得积分10
1秒前
1秒前
Orange应助Alex采纳,获得10
2秒前
nnnn应助wuchun采纳,获得20
2秒前
2秒前
2秒前
2秒前
今后应助等待的凌晴采纳,获得30
3秒前
毛彬发布了新的文献求助10
3秒前
酷酷的起眸完成签到,获得积分20
3秒前
NexusExplorer应助hooke采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI6应助口天吴采纳,获得10
5秒前
5秒前
5秒前
壮观晓博发布了新的文献求助10
6秒前
泰想成功发布了新的文献求助10
6秒前
yahaha完成签到,获得积分10
6秒前
6秒前
6秒前
1592611829完成签到,获得积分10
6秒前
TOMORROW完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
今后应助yoyo采纳,获得10
7秒前
落后的哈密瓜完成签到,获得积分10
7秒前
8秒前
FashionBoy应助倪13采纳,获得10
8秒前
mht发布了新的文献求助10
9秒前
深情安青应助luoyulin采纳,获得10
9秒前
滴滴答答发布了新的文献求助10
9秒前
honey完成签到 ,获得积分10
10秒前
Fiee完成签到,获得积分10
10秒前
ummmmm完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791