已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier BV]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小L完成签到 ,获得积分10
3秒前
小南完成签到 ,获得积分10
6秒前
呆呆完成签到 ,获得积分10
8秒前
8秒前
哭泣的丝完成签到 ,获得积分10
9秒前
kevin完成签到 ,获得积分10
10秒前
xin完成签到,获得积分10
12秒前
13秒前
CipherSage应助典雅的诗兰采纳,获得10
13秒前
BettyNie完成签到 ,获得积分10
14秒前
15秒前
奔跑西木完成签到 ,获得积分10
15秒前
贤惠的早晨完成签到,获得积分10
15秒前
yy发布了新的文献求助20
17秒前
大方大船完成签到,获得积分10
17秒前
稳重的悟空完成签到 ,获得积分10
19秒前
CodeCraft应助akakns采纳,获得10
20秒前
hyhyhyhy发布了新的文献求助10
20秒前
Pauline完成签到 ,获得积分10
21秒前
chaos完成签到 ,获得积分10
21秒前
依惜完成签到,获得积分10
22秒前
fx完成签到 ,获得积分10
25秒前
kjmooo完成签到,获得积分10
25秒前
按照国际惯例完成签到 ,获得积分0
26秒前
顾矜应助hyhyhyhy采纳,获得10
26秒前
Ss完成签到 ,获得积分10
27秒前
ZTLlele完成签到 ,获得积分10
27秒前
小任性完成签到 ,获得积分20
29秒前
LWJ完成签到 ,获得积分10
30秒前
CAOHOU举报忐忑的行天求助涉嫌违规
30秒前
任志政完成签到 ,获得积分10
32秒前
32秒前
平常日记本完成签到 ,获得积分10
32秒前
Chen完成签到,获得积分10
33秒前
35秒前
serendipity完成签到 ,获得积分10
37秒前
瞬间de回眸完成签到 ,获得积分10
37秒前
akakns发布了新的文献求助10
37秒前
hhhhhhhhhh完成签到 ,获得积分10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994675
求助须知:如何正确求助?哪些是违规求助? 3534926
关于积分的说明 11266808
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749