Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region

纳米孔 生物分子 材料科学 纳米技术 化学物理 分子 化学 有机化学
作者
Matteo Baldelli,Giovanni Di Muccio,Adina Sauciuc,Blasco Morozzo della Rocca,Francesco Viola,Sébastien Balme,Andrea Bonini,Giovanni Maglia,Mauro Chinappi
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (33) 被引量:4
标识
DOI:10.1002/adma.202401761
摘要

Nanopores are powerful tools for single-molecule sensing of biomolecules and nanoparticles. The signal coming from the molecule to be analyzed strongly depends on its interaction with the narrower section of the nanopore (constriction) that may be tailored to increase sensing accuracy. Modifications of nanopore constriction have also been commonly used to induce electroosmosis, that favors the capture of molecules in the nanopore under a voltage bias and independently of their charge. However, engineering nanopores for increasing both electroosmosis and sensing accuracy is challenging. Here it is shown that large electroosmotic flows can be achieved without altering the nanopore constriction. Using continuum electrohydrodynamic simulations, it is found that an external charged ring generates strong electroosmosis in cylindrical nanopores. Similarly, for conical nanopores it is shown that moving charges away from the cone tip still results in an electroosmotic flow (EOF), whose intensity reduces increasing the diameter of the nanopore section where charges are placed. This paradigm is applied to engineered biological nanopores showing, via atomistic simulations and experiments, that mutations outside the constriction induce a relatively intense electroosmosis. This strategy provides much more flexibility in nanopore design since electroosmosis can be controlled independently from the constriction, which can be optimized to improve sensing accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BreakingYQ发布了新的文献求助10
刚刚
1秒前
Trost发布了新的文献求助10
1秒前
TanFT发布了新的文献求助10
1秒前
2秒前
LegendThree完成签到,获得积分10
2秒前
SEMA3C完成签到,获得积分10
3秒前
孤舟寂发布了新的文献求助10
3秒前
甜美书瑶发布了新的文献求助10
4秒前
weiwei完成签到,获得积分10
5秒前
5秒前
5秒前
meo应助CBWKEYANTONG123采纳,获得10
5秒前
ming完成签到,获得积分10
5秒前
加鲁鲁发布了新的文献求助10
6秒前
欣喜无色完成签到,获得积分10
6秒前
英姑应助ziyue采纳,获得10
6秒前
ywd完成签到,获得积分10
6秒前
勤奋西牛发布了新的文献求助10
7秒前
qin希望应助清新的寻菡采纳,获得10
8秒前
18-Crown-6完成签到,获得积分10
8秒前
聪慧的如彤完成签到,获得积分10
8秒前
8秒前
梦梦完成签到 ,获得积分10
8秒前
完美世界应助不学无术采纳,获得10
8秒前
脑洞疼应助去去去问问采纳,获得10
9秒前
番茄炒西红柿完成签到,获得积分10
9秒前
10秒前
SYLH应助TanFT采纳,获得10
10秒前
英姑应助xiewuhua采纳,获得10
10秒前
岁岁发布了新的文献求助10
11秒前
11秒前
阿奇完成签到,获得积分10
11秒前
11秒前
小马甲应助sunny采纳,获得10
11秒前
乐乐应助18-Crown-6采纳,获得10
12秒前
12秒前
GGbond发布了新的文献求助10
12秒前
顾矜应助头发还多采纳,获得10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552733
求助须知:如何正确求助?哪些是违规求助? 3128816
关于积分的说明 9379625
捐赠科研通 2827928
什么是DOI,文献DOI怎么找? 1554818
邀请新用户注册赠送积分活动 725573
科研通“疑难数据库(出版商)”最低求助积分说明 715031