Self-consuming expansion stress construct piezoelectric field to accelerate anion for SiO/PbZr0.52Ti0.48O3 with persistent lithium storage performance

压电 离子 锂(药物) 压力(语言学) 材料科学 构造(python库) 应力场 领域(数学) 化学工程 无机化学 化学 复合材料 热力学 计算机科学 物理 有机化学 心理学 数学 工程类 语言学 哲学 有限元法 精神科 纯数学 程序设计语言
作者
Xiangnan Pei,Hongshun Zhao,Xudong Zhang,Kang Liang,Min Wu,Youming Shen,Xiaobing Huang,Yurong Ren
出处
期刊:Journal of Solid State Chemistry [Elsevier]
卷期号:337: 124795-124795
标识
DOI:10.1016/j.jssc.2024.124795
摘要

The high theoretical specific capacity and suitable working potential of silicon oxides (SiOx) making it one of the most promising candidates for the next generation of lithium-ion battery anode materials. However, the large-scale application of SiOx in lithium-ion battery anodes is hampered by the huge volume change (>200%) during cycling process. This experiment adopts a method which is completely contrary to the traditional modification method——composite with piezoelectric materials to take advantage of this expansion. During the lithiation process, the significant volume expansion stress of SiO is transformed into a driving force by PbZr0.52Ti0.48O3 (PZT) particles that enhances the transport of Li+. The polarization of PZT particles occurs as a result of the consumption of mechanical stress caused by the expansion of SiO, leading to the generation of a piezoelectric potential. Since then, the volume expansion stress of SiO when deintercalating lithium is converted into a potential difference, which can promote the migration of Li+. This process not only reduces the volume expansion of SiO, but also promotes the mobility of Li+. The SiO/PZT anode shows an admirable cycle performance: The discharge capacity is 825.4 mA h g-1, and the capacity retention ratio is reach up to 92.5% (200 mA g-1, 200 cycles). These findings illuminate the surface coupling approach employed to regulate the behavior of interfacial Li+ kinetics, while simultaneously enhancing the structural stability of alloy-based anodes. This research will undoubtedly capture the attention of researchers engaged in the study of multifunctional interface design for electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光衣完成签到,获得积分10
2秒前
3秒前
Singularity应助jiajia采纳,获得20
4秒前
小马甲应助Xu采纳,获得10
4秒前
5秒前
西瓜完成签到,获得积分10
5秒前
biuesky发布了新的文献求助10
6秒前
思源应助高lucky采纳,获得10
6秒前
Darlin完成签到 ,获得积分10
7秒前
cyy完成签到,获得积分10
7秒前
Ava应助bvuiragybv采纳,获得10
7秒前
Umair发布了新的文献求助10
8秒前
xiaohu完成签到,获得积分10
9秒前
在水一方应助iiiiii采纳,获得10
10秒前
10秒前
13秒前
15秒前
yanbeio发布了新的文献求助20
17秒前
17秒前
可爱的函函应助Hlinc采纳,获得10
17秒前
18秒前
luanzhaohui应助稳重元冬采纳,获得50
19秒前
20秒前
Lan完成签到 ,获得积分10
20秒前
读研好难发布了新的文献求助10
20秒前
斯文败类应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得30
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
不配.应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得10
23秒前
hilda应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
Singularity应助聪慧豁采纳,获得20
25秒前
奇怪人类完成签到,获得积分10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260