Learning QM/MM potential using equivariant multiscale model

多极展开 泰勒级数 计算机科学 统计物理学 操作员(生物学) 极化(电化学) 静电学 物理 数学 化学 数学分析 量子力学 基因 转录因子 物理化学 抑制因子 生物化学
作者
Yao-Kun Lei,Kiyoshi Yagi,Yuji Sugita
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (21) 被引量:9
标识
DOI:10.1063/5.0205123
摘要

The machine learning (ML) method emerges as an efficient and precise surrogate model for high-level electronic structure theory. Its application has been limited to closed chemical systems without considering external potentials from the surrounding environment. To address this limitation and incorporate the influence of external potentials, polarization effects, and long-range interactions between a chemical system and its environment, the first two terms of the Taylor expansion of an electrostatic operator have been used as extra input to the existing ML model to represent the electrostatic environments. However, high-order electrostatic interaction is often essential to account for external potentials from the environment. The existing models based only on invariant features cannot capture significant distribution patterns of the external potentials. Here, we propose a novel ML model that includes high-order terms of the Taylor expansion of an electrostatic operator and uses an equivariant model, which can generate a high-order tensor covariant with rotations as a base model. Therefore, we can use the multipole-expansion equation to derive a useful representation by accounting for polarization and intermolecular interaction. Moreover, to deal with long-range interactions, we follow the same strategy adopted to derive long-range interactions between a target system and its environment media. Our model achieves higher prediction accuracy and transferability among various environment media with these modifications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangoak发布了新的文献求助20
刚刚
刚刚
大个应助shimmer采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
乐观莹芝发布了新的文献求助10
1秒前
jjy完成签到,获得积分10
2秒前
gafssr完成签到,获得积分10
2秒前
WSY发布了新的文献求助10
2秒前
一一应助管理想采纳,获得10
4秒前
哈哈哈发布了新的文献求助30
4秒前
4秒前
爱吃煎饼果子的芋圆完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
科研通AI5应助张啦啦采纳,获得30
6秒前
6秒前
ALDXL发布了新的文献求助10
6秒前
细心妙菡发布了新的文献求助10
6秒前
悦果完成签到 ,获得积分10
7秒前
顾矜应助lili采纳,获得10
8秒前
聪慧的伟发布了新的文献求助10
9秒前
小曹硕士发布了新的文献求助10
10秒前
Guowei发布了新的文献求助10
10秒前
研友_nVNBVn发布了新的文献求助10
11秒前
蟹蟹发布了新的文献求助10
11秒前
11秒前
CHENNIAN完成签到,获得积分20
12秒前
rivertea发布了新的文献求助30
12秒前
13秒前
英姑应助Yolo采纳,获得10
14秒前
燕园完成签到,获得积分10
14秒前
梭梭发布了新的文献求助10
15秒前
852应助小曹硕士采纳,获得10
16秒前
善学以致用应助aefs采纳,获得10
16秒前
16秒前
科研通AI5应助琳科研_文献采纳,获得10
16秒前
17秒前
聪慧的伟完成签到,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749152
求助须知:如何正确求助?哪些是违规求助? 3292411
关于积分的说明 10076547
捐赠科研通 3007880
什么是DOI,文献DOI怎么找? 1651897
邀请新用户注册赠送积分活动 786875
科研通“疑难数据库(出版商)”最低求助积分说明 751861