形状记忆合金
线性
执行机构
材料科学
控制理论(社会学)
合金
机械工程
计算机科学
复合材料
电气工程
工程类
人工智能
控制(管理)
作者
Andres Osorio Salazar,Yusuke Sugahara
标识
DOI:10.1088/1361-665x/ad5e4e
摘要
Abstract The non-linearity of Shape Memory Alloy's (SMA) input vs. output relationship has been a significant barrier to their broader application for actuators. In this article, we introduce a novel activation approach with the objective of improving the output nonlinearity in SMA actuators by using a liquid temperature gradient for activation. This gradient, with a narrow inflection point, selectively activates and deactivates different portions of the SMA, allowing control of the overall actuator's output by adjusting the inflection point's position. Two prototypes with the proposed concept were constructed and tested for force and displacement output. Their inner shape design facilitates the creation of a temperature gradient, whose inflection point is adjusted by varying the mix ratio of the inlet of hot and cold water. The performance of the prototypes was evaluated, including their ability to generate a temperature gradient, output linearity, activation dead time and time constant, and compatibility with a linear controller. The output linearity, activation dead time, and time constant were also compared with traditional wet activation. Our findings suggest that this technique significantly enhances the performance and predictability of SMA-based actuators and is compatible with PID controllers without additional feedforward or modeling techniques, offering a practical solution to a long-standing challenge in the field.
科研通智能强力驱动
Strongly Powered by AbleSci AI