期刊:CES transactions on electrical machines and systems [Electrical Engineering Press Co. Ltd.] 日期:2024-06-01卷期号:8 (2): 170-176
标识
DOI:10.30941/cestems.2024.00024
摘要
With the continuous improvement of permanent magnet (PM) wind generators' capacity and power density, the design of reasonable and efficient cooling structures has become a focus. This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator. The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades, and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator. According to the structural parameters of the cooling system, the Taguchi method is used to decouple the structural variables. The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed, and the appropriate cooling structure scheme is determined.