Acoustofluidics-enhanced biosensing with simultaneously high sensitivity and speed

生物传感器 微流控 生物分子 材料科学 传感器 微尺度化学 纳米技术 灵敏度(控制系统) 炸薯条 实验室晶片 声表面波 光电子学 声学 计算机科学 电子工程 电信 物理 工程类 数学教育 数学
作者
Yuang Li,Yang Zhao,Yang Yang,Wenchang Zhang,Yun Zhang,Sheng Sun,Lingqian Zhang,Mingxiao Li,Hang Gao,Chengjun Huang
出处
期刊:Microsystems & Nanoengineering [Springer Nature]
卷期号:10 (1)
标识
DOI:10.1038/s41378-024-00731-3
摘要

Abstract Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
充电宝应助acow采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得30
5秒前
知许解夏应助科研通管家采纳,获得10
5秒前
yznfly应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
知许解夏应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
May应助科研通管家采纳,获得10
6秒前
march应助科研通管家采纳,获得60
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
萧水白应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
知许解夏应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
畅通无阻发布了新的文献求助10
8秒前
深情傀斗发布了新的文献求助10
9秒前
9秒前
9秒前
思源应助科研小白采纳,获得10
12秒前
13秒前
小智发布了新的文献求助10
13秒前
糖醋可乐发布了新的文献求助10
14秒前
xxx完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388