费托法
催化作用
X射线光电子能谱
纳米颗粒
材料科学
煅烧
色散(光学)
烧结
化学工程
粒径
纳米技术
多相催化
合成气
化学
选择性
有机化学
冶金
光学
工程类
物理
作者
M. W. Lindley,P. V. Stishenko,James W. M. Crawley,Fred Tinkamanyire,Matthew D. Smith,James Paterson,Mark Peacock,Zhuoran Xu,Christopher Hardacre,Alex S. Walton,Andrew J. Logsdail,Sarah J. Haigh
标识
DOI:10.1021/acscatal.4c02721
摘要
Modifying traditional Co/TiO2-based Fischer–Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co–Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI