A novel prognostic signature related to programmed cell death in osteosarcoma

骨肉瘤 程序性细胞死亡 小桶 Lasso(编程语言) 基因敲除 比例危险模型 细胞凋亡 医学 基因 肿瘤科 癌症研究 计算机科学 生物 内科学 基因表达 转录组 遗传学 万维网
作者
Yuchen Jiang,Qitong Xu,Hongbin Wang,Siyuan Ren,Yao Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1427661
摘要

Background Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes—CLTCL1, EDIL3, and SQLE—resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion The five genes constituting the OS-PCDS model—CLTCL1, MTM1, MLH1, EDIL3, and SQLE—were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助Yve采纳,获得30
1秒前
_hhhjhhh完成签到,获得积分10
2秒前
2秒前
neon完成签到,获得积分20
2秒前
赘婿应助三乐采纳,获得10
3秒前
可爱的函函应助花花花花采纳,获得10
3秒前
3秒前
hehe发布了新的文献求助50
3秒前
3秒前
4秒前
5秒前
5秒前
星辰大海应助陶醉月光采纳,获得10
7秒前
7秒前
bobo发布了新的文献求助10
8秒前
蜡笔小鑫发布了新的文献求助10
9秒前
9秒前
9秒前
lalalala关注了科研通微信公众号
10秒前
ziyiziyi完成签到,获得积分10
10秒前
京1kqq发布了新的文献求助10
10秒前
在水一方应助Z777采纳,获得10
10秒前
年轻秋烟发布了新的文献求助10
10秒前
1665完成签到,获得积分10
11秒前
13秒前
寄云间发布了新的文献求助20
13秒前
啦啦啦啦发布了新的文献求助10
14秒前
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
stuffmatter应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
笨笨若魔应助科研通管家采纳,获得10
14秒前
不懈奋进应助科研通管家采纳,获得30
14秒前
14秒前
15秒前
cl发布了新的文献求助10
15秒前
风收奇绩发布了新的文献求助10
16秒前
花花花花发布了新的文献求助10
17秒前
17秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218437
求助须知:如何正确求助?哪些是违规求助? 2867675
关于积分的说明 8157461
捐赠科研通 2534649
什么是DOI,文献DOI怎么找? 1367095
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618105