A novel prognostic signature related to programmed cell death in osteosarcoma

骨肉瘤 程序性细胞死亡 小桶 Lasso(编程语言) 基因敲除 比例危险模型 细胞凋亡 医学 基因 肿瘤科 癌症研究 计算机科学 生物 内科学 基因表达 转录组 遗传学 万维网
作者
Yuchen Jiang,Qitong Xu,Hongbin Wang,Siyuan Ren,Yao Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1427661
摘要

Background Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes—CLTCL1, EDIL3, and SQLE—resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion The five genes constituting the OS-PCDS model—CLTCL1, MTM1, MLH1, EDIL3, and SQLE—were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyuchen发布了新的文献求助10
刚刚
ipeakkka完成签到,获得积分20
2秒前
马克发布了新的文献求助10
2秒前
赵OO完成签到,获得积分10
2秒前
Yon完成签到 ,获得积分10
3秒前
呆头完成签到,获得积分10
3秒前
科研通AI5应助skier采纳,获得10
4秒前
ywang发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
keyantong完成签到 ,获得积分10
10秒前
booshu完成签到,获得积分10
11秒前
jy发布了新的文献求助10
12秒前
朴斓完成签到,获得积分10
12秒前
科研通AI5应助魏伯安采纳,获得10
15秒前
哈密哈密完成签到,获得积分10
15秒前
15秒前
Ava应助浪迹天涯采纳,获得10
15秒前
16秒前
安南发布了新的文献求助10
16秒前
17秒前
healthy完成签到 ,获得积分10
17秒前
18秒前
刘大可完成签到,获得积分10
18秒前
21秒前
su发布了新的文献求助10
21秒前
rookie发布了新的文献求助10
22秒前
方勇飞发布了新的文献求助10
23秒前
郭菱香完成签到 ,获得积分20
23秒前
皮念寒完成签到,获得积分10
23秒前
顺其自然_666888完成签到,获得积分10
23秒前
24秒前
向上的小v完成签到 ,获得积分10
25秒前
25秒前
27秒前
酷酷紫蓝完成签到 ,获得积分10
27秒前
27秒前
方勇飞完成签到,获得积分10
27秒前
LYZ完成签到,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824