A novel prognostic signature related to programmed cell death in osteosarcoma

骨肉瘤 程序性细胞死亡 小桶 Lasso(编程语言) 基因敲除 比例危险模型 细胞凋亡 医学 基因 肿瘤科 癌症研究 计算机科学 生物 内科学 基因表达 转录组 遗传学 万维网
作者
Yuchen Jiang,Qitong Xu,Hongbin Wang,Siyuan Ren,Yao Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1427661
摘要

Background Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes—CLTCL1, EDIL3, and SQLE—resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion The five genes constituting the OS-PCDS model—CLTCL1, MTM1, MLH1, EDIL3, and SQLE—were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
brwen发布了新的文献求助10
2秒前
南音完成签到 ,获得积分10
2秒前
3秒前
十月发布了新的文献求助10
3秒前
领导范儿应助韩hqf采纳,获得10
3秒前
4秒前
4秒前
迷路的蛋挞完成签到,获得积分20
4秒前
4秒前
鳗鱼飞松完成签到,获得积分20
5秒前
Owen应助Archer采纳,获得10
5秒前
无风海发布了新的文献求助10
5秒前
DajeVn完成签到,获得积分10
5秒前
赤丶赤发布了新的文献求助10
6秒前
6秒前
赘婿应助xly采纳,获得10
6秒前
可爱的函函应助刘龙强采纳,获得10
6秒前
Frost完成签到,获得积分10
7秒前
MTF完成签到,获得积分20
7秒前
www发布了新的文献求助10
8秒前
8秒前
桃子完成签到,获得积分10
9秒前
清河海风发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
贺呵呵完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
一念往生完成签到,获得积分10
11秒前
12秒前
Lucas应助zyqsn采纳,获得10
12秒前
打打应助无风海采纳,获得10
12秒前
万能图书馆应助zhang采纳,获得30
13秒前
打打应助小彬采纳,获得10
13秒前
桐桐应助wllom采纳,获得10
13秒前
balabala发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002