A novel prognostic signature related to programmed cell death in osteosarcoma

骨肉瘤 程序性细胞死亡 小桶 Lasso(编程语言) 基因敲除 比例危险模型 细胞凋亡 医学 基因 肿瘤科 癌症研究 计算机科学 生物 内科学 基因表达 转录组 遗传学 万维网
作者
Yuchen Jiang,Qitong Xu,Hongbin Wang,Siyuan Ren,Yao Zhang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1427661
摘要

Background Osteosarcoma primarily affects children and adolescents, with current clinical treatments often resulting in poor prognosis. There has been growing evidence linking programmed cell death (PCD) to the occurrence and progression of tumors. This study aims to enhance the accuracy of OS prognosis assessment by identifying PCD-related prognostic risk genes, constructing a PCD-based OS prognostic risk model, and characterizing the function of genes within this model. Method We retrieved osteosarcoma patient samples from TARGET and GEO databases, and manually curated literature to summarize 15 forms of programmed cell death. We collated 1621 PCD genes from literature sources as well as databases such as KEGG and GSEA. To construct our model, we integrated ten machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox, survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was chosen based on the average C-index, and named Osteosarcoma Programmed Cell Death Score (OS-PCDS). To validate the predictive performance of our model across different datasets, we employed three independent GEO validation sets. Moreover, we assessed mRNA and protein expression levels of the genes included in our model, and investigated their impact on proliferation, migration, and apoptosis of osteosarcoma cells by gene knockdown experiments. Result In our extensive analysis, we identified 30 prognostic risk genes associated with programmed cell death (PCD) in osteosarcoma (OS). To assess the predictive power of these genes, we computed the C-index for various combinations. The model that employed the random survival forest (RSF) algorithm demonstrated superior predictive performance, significantly outperforming traditional approaches. This optimal model included five key genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of these genes, we analyzed their mRNA and protein expression levels, revealing significant disparities between osteosarcoma cells and normal tissue cells. Specifically, the expression levels of these genes were markedly altered in OS cells, suggesting their critical role in tumor progression. Further functional validation was performed through gene knockdown experiments in U2OS cells. Knockdown of three of these genes—CLTCL1, EDIL3, and SQLE—resulted in substantial changes in proliferation rate, migration capacity, and apoptosis rate of osteosarcoma cells. These findings underscore the pivotal roles of these genes in the pathophysiology of osteosarcoma and highlight their potential as therapeutic targets. Conclusion The five genes constituting the OS-PCDS model—CLTCL1, MTM1, MLH1, EDIL3, and SQLE—were found to significantly impact the proliferation, migration, and apoptosis of osteosarcoma cells, highlighting their potential as key prognostic markers and therapeutic targets. OS-PCDS enables accurate evaluation of the prognosis in patients with osteosarcoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴大王完成签到,获得积分10
2秒前
思源应助冷傲的靖雁采纳,获得10
3秒前
3秒前
Dr_Zhan完成签到 ,获得积分10
5秒前
文刀刘完成签到 ,获得积分10
6秒前
研友_85rJEL完成签到 ,获得积分10
8秒前
8秒前
小通通完成签到 ,获得积分10
8秒前
领导范儿应助数星星采纳,获得10
9秒前
棒呆了咸蛋超女完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
杨利英完成签到 ,获得积分10
9秒前
7分运气完成签到,获得积分10
9秒前
Yynnn完成签到 ,获得积分10
10秒前
10秒前
12秒前
zwjhbz完成签到,获得积分10
13秒前
科研通AI6.1应助陈龙采纳,获得10
13秒前
赵儒浩发布了新的文献求助10
13秒前
14秒前
15秒前
fyukgfdyifotrf完成签到,获得积分10
15秒前
共享精神应助懒洋洋采纳,获得10
17秒前
拼死拼活完成签到,获得积分10
18秒前
林林完成签到 ,获得积分10
18秒前
hhh发布了新的文献求助10
19秒前
19秒前
20秒前
22秒前
终极007完成签到 ,获得积分10
22秒前
安宁完成签到 ,获得积分10
23秒前
清秀书兰完成签到 ,获得积分10
23秒前
彭于晏应助赵儒浩采纳,获得10
23秒前
曾俊宇完成签到 ,获得积分10
23秒前
23秒前
25秒前
zx发布了新的文献求助10
25秒前
拼死拼活发布了新的文献求助10
25秒前
26秒前
给我好好读书完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838