Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)

脑自动调节 自动调节 脑血流 背景(考古学) 计算机科学 脑灌注压 时域 神经科学 频域 灵活性(工程) 医学 血压 心脏病学 内科学 心理学 生物 数学 统计 古生物学 计算机视觉
作者
Kyriaki Kostoglou,Felipe Andres Bello-Robles,Patrice Brassard,Máx Chacón,Jurgen A.H.R. Claassen,Marek Czosnyka,Jan‐Willem J. Elting,Kun Hu,Lawrence Labrecque,Jia Liu,Vasilis Z. Marmarelis,Stephen J. Payne,Dae C. Shin,David M. Simpson,Jonathan D. Smirl,Ronney B. Panerai,Georgios D. Mitsis
出处
期刊:Journal of Cerebral Blood Flow and Metabolism [SAGE]
卷期号:44 (9): 1480-1514 被引量:2
标识
DOI:10.1177/0271678x241249276
摘要

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助虚心千凡采纳,获得10
刚刚
1秒前
when完成签到 ,获得积分10
1秒前
1秒前
2秒前
dgz完成签到,获得积分10
2秒前
雅雅完成签到 ,获得积分10
3秒前
小二郎应助湿地小怪兽采纳,获得10
3秒前
3秒前
ding应助自由寻冬采纳,获得10
3秒前
4秒前
4秒前
Yu发布了新的文献求助10
4秒前
6秒前
鳗鱼鞋垫发布了新的文献求助10
6秒前
儒雅晓霜完成签到,获得积分10
6秒前
7秒前
8秒前
时尚觅松发布了新的文献求助10
8秒前
zzz完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
112450195完成签到,获得积分10
9秒前
低调小狗发布了新的文献求助10
9秒前
as_eichi完成签到,获得积分10
10秒前
充电宝应助小池采纳,获得10
10秒前
ding应助贰什柒采纳,获得10
10秒前
要减肥的鹤完成签到,获得积分10
10秒前
小蘑菇应助li采纳,获得10
11秒前
11秒前
12秒前
kkk完成签到,获得积分10
12秒前
12秒前
12秒前
李子完成签到,获得积分10
13秒前
13秒前
善学以致用应助早日毕业采纳,获得10
13秒前
小耳朵完成签到,获得积分10
13秒前
孔大发布了新的文献求助10
13秒前
123发布了新的文献求助10
13秒前
黄宇航完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680