Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet)

脑自动调节 自动调节 脑血流 背景(考古学) 计算机科学 脑灌注压 时域 神经科学 频域 灵活性(工程) 医学 血压 心脏病学 内科学 心理学 生物 数学 古生物学 统计 计算机视觉
作者
Kyriaki Kostoglou,Felipe Andres Bello-Robles,Patrice Brassard,Máx Chacón,Jurgen A.H.R. Claassen,Marek Czosnyka,Jan‐Willem J. Elting,Kun Hu,Lawrence Labrecque,Jia Liu,Vasilis Z. Marmarelis,Stephen J. Payne,Dae C. Shin,David M. Simpson,Jonathan D. Smirl,Ronney B. Panerai,Georgios D. Mitsis
出处
期刊:Journal of Cerebral Blood Flow and Metabolism [SAGE]
卷期号:44 (9): 1480-1514 被引量:2
标识
DOI:10.1177/0271678x241249276
摘要

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研八戒发布了新的文献求助10
1秒前
Kikisman发布了新的文献求助10
1秒前
Cain完成签到,获得积分10
2秒前
2秒前
姚宇欣发布了新的文献求助10
3秒前
5秒前
呼呼呼发布了新的文献求助10
5秒前
6秒前
gmjinfeng完成签到,获得积分0
9秒前
9秒前
zoe发布了新的文献求助10
9秒前
10秒前
旗木发布了新的文献求助10
10秒前
11秒前
12秒前
芦同学发布了新的文献求助10
12秒前
SciGPT应助小羊采纳,获得10
13秒前
嘻嘻完成签到,获得积分10
14秒前
17秒前
龙超人发布了新的文献求助10
17秒前
马超放烟花完成签到 ,获得积分10
19秒前
SciGPT应助BLCER采纳,获得10
19秒前
不去明知山完成签到 ,获得积分10
20秒前
L112233发布了新的文献求助10
22秒前
Stokis发布了新的文献求助30
22秒前
Hesm完成签到,获得积分20
23秒前
23秒前
旗木完成签到,获得积分10
23秒前
25秒前
科研通AI2S应助默默千风采纳,获得10
26秒前
Heavenfalling完成签到,获得积分10
27秒前
小平发布了新的文献求助10
27秒前
万能图书馆应助阮煜城采纳,获得10
28秒前
呼呼呼完成签到,获得积分10
29秒前
30秒前
田様应助芦同学采纳,获得10
30秒前
BLCER发布了新的文献求助10
30秒前
Owen应助易安采纳,获得30
31秒前
32秒前
笙声完成签到 ,获得积分10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468