Highly Sensitive, Low-Energy-Consumption Biomimetic Olfactory Synaptic Transistors Based on the Aggregation of the Semiconductor Films

材料科学 神经形态工程学 晶体管 兴奋性突触后电位 光电子学 纳米技术 嗅觉系统 半导体 有机半导体 能源消耗 计算机科学 电压 神经科学 电气工程 人工神经网络 人工智能 抑制性突触后电位 生物 工程类
作者
Xiao‐Cheng Wu,Siyu Chen,Longlong Jiang,Xiaohong Wang,Longzhen Qiu,Lei Zheng
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (5): 2673-2683 被引量:1
标识
DOI:10.1021/acssensors.4c00616
摘要

Artificial olfactory synaptic devices with low energy consumption and low detection limits are important for the further development of neuromorphic computing and intelligent robotics. In this work, an ultralow energy consumption and low detection limit imitation olfactory synaptic device based on organic field-effect transistors (OFETs) was prepared. The aggregation state of poly(diketopyrrolopyrrole–selenophene) (PTDPP) semiconductor films is modulated by adding unfavorable solvents and annealing treatments to obtain excellent charge transfer and gas synaptic properties. The regulated OFET device can execute basic biological synaptic functions, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), and the transition from short-term to long-term plasticity, at an ultralow operating voltage of −0.0005 V. The ultralow energy consumption during the biomimetic simulation is in the range of 8.94–88 fJ per spike. Noteworthily, the gas detection limit of the device is as low as 50 ppb, well below normal human NO2 gas perception limits (100–1000 ppb). Additionally, high-pass filtering, Pavlovian conditioned reflexes, and decoding of "Morse code" were simulated. Finally, a grid-free conformal device with outstanding flexibility and stability was fabricated. In conclusion, the control of semiconductor thin-film aggregation provides effective guidance for preparing low-energy-consumption, highly sensitive olfactory nerve-mimicking devices and promoting the development of wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
头发乱了发布了新的文献求助10
2秒前
天天快乐应助DrYang采纳,获得10
2秒前
含糊发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
完美世界应助幸福胡萝卜采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
5秒前
科目三应助Arnold采纳,获得10
5秒前
润润轩轩发布了新的文献求助10
6秒前
宗笑晴发布了新的文献求助10
6秒前
lucky完成签到,获得积分10
6秒前
糖糖发布了新的文献求助10
7秒前
7秒前
跳跃尔容完成签到,获得积分10
8秒前
wyblobin完成签到,获得积分10
8秒前
8秒前
9秒前
沉默沛岚完成签到,获得积分10
9秒前
丰知然应助宇文宛菡采纳,获得10
9秒前
所所应助tu采纳,获得30
10秒前
mechefy完成签到,获得积分10
10秒前
鲤鱼萧完成签到,获得积分10
11秒前
宗笑晴完成签到,获得积分10
11秒前
12秒前
小蘑菇应助头发乱了采纳,获得10
12秒前
代萌萌发布了新的文献求助10
13秒前
jucy发布了新的文献求助50
13秒前
13秒前
Lz完成签到,获得积分10
13秒前
Hello应助葛辉辉采纳,获得10
13秒前
秦嘉旎完成签到,获得积分10
14秒前
华仔应助通~采纳,获得10
14秒前
万能图书馆应助半颗橙子采纳,获得10
14秒前
樱铃完成签到,获得积分10
15秒前
15秒前
上官若男应助俭朴的明轩采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762