Retrieval-Augmented Generation–Enabled GPT-4 for Clinical Trial Screening

临床试验 计算机科学 计算生物学 医学 情报检索 环境科学 生物 内科学
作者
Ozan Ünlü,Jiyeon Shin,Charlotte Mailly,Michael Oates,Michela Tucci,Matthew Varugheese,Kavishwar B. Wagholikar,F Wang,Benjamin M. Scirica,Anne J. Blood,Samuel Aronson
标识
DOI:10.1056/aioa2400181
摘要

BackgroundScreening participants in clinical trials is an error-prone and labor-intensive process that requires significant time and resources. Large language models such as generative pretrained transformer 4 (GPT-4) present an opportunity to enhance the screening process with advanced natural language processing. This study evaluates the utility of a Retrieval-Augmented Generation (RAG)–enabled GPT-4 system to improve the accuracy, efficiency, and reliability of screening for a trial involving patients with symptomatic heart failure.MethodsThe ongoing Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF; ClinicalTrials.gov number, NCT05734690) trial identifies potential participants through electronic health record (EHR) queries followed by manual reviews by trained but nonlicensed study staff. To determine patient eligibility for the COPILOT-HF study that is not identifiable by structured EHR queries, we developed RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review (RECTIFIER), a clinical note–based, question-answering system powered by RAG and GPT-4. We used clinical notes on 100, 282, and 1894 patients for development, validation, and test datasets, respectively. An expert clinician conducted a blinded review to establish "gold standard" answers to 13 target criteria questions. We calculated performance metrics (sensitivity, specificity, accuracy, and Matthews correlation coefficient [MCC]) in determining patient eligibility for each target criterion and for each of four screening methods (study staff, RECTIFIER with a single-question strategy, RECTIFIER with a combined-question strategy, and RECTIFIER with GPT-3.5 instead of GPT-4).ResultsThe RECTIFIER and COPILOT-HF study staff's answers closely aligned with the expert clinicians' answers across the target criteria, with accuracy ranging between 97.9% and 100% (MCC, 0.837 and 1) for RECTIFIER and between 91.7% and 100% (MCC, 0.644 and 1) for the study staff. RECTIFIER performed better than the study staff in determining symptomatic heart failure, with an accuracy of 97.9% versus 91.7% and an MCC of 0.924 versus 0.721, respectively. Overall, the sensitivity and specificity for determining patient eligibility with RECTIFIER were 92.3% and 93.9%, respectively, and 90.1% and 83.6% with the study staff. With RECTIFIER, the single-question approach to determining eligibility resulted in an average cost of 11 cents per patient, and the combined-question approach resulted in an average cost of 2 cents per patient.ConclusionsLarge language model–based solutions such as RECTIFIER can significantly enhance clinical trial screening performance and reduce costs by automating the screening process. However, integrating such technologies requires careful consideration of potential hazards and should include safeguards such as final clinician review. (Funded by the Accelerator for Clinical Transformation [ACT]; ClinicalTrials.gov number, NCT05734690.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助李哥采纳,获得10
刚刚
唐难破完成签到,获得积分10
2秒前
3秒前
4秒前
迷路尔曼发布了新的文献求助10
4秒前
4秒前
天南发布了新的文献求助10
4秒前
科研通AI2S应助gy采纳,获得10
6秒前
6秒前
李爱国应助111采纳,获得10
6秒前
Novajet发布了新的文献求助10
8秒前
snow完成签到 ,获得积分10
9秒前
11秒前
wangruize发布了新的文献求助10
11秒前
传奇3应助zhyi采纳,获得10
12秒前
16秒前
16秒前
wwwwww发布了新的文献求助10
18秒前
CipherSage应助得鹿梦鱼采纳,获得10
18秒前
TwenYao发布了新的文献求助10
19秒前
Jana完成签到,获得积分10
19秒前
111发布了新的文献求助10
21秒前
wwwwww完成签到,获得积分10
25秒前
25秒前
柔弱友卉应助haikuotian采纳,获得20
25秒前
26秒前
ppp完成签到,获得积分10
28秒前
小草三心发布了新的文献求助10
29秒前
fang完成签到 ,获得积分10
29秒前
30秒前
111发布了新的文献求助10
31秒前
舍得完成签到,获得积分10
32秒前
32秒前
甜甜如豹关注了科研通微信公众号
32秒前
Hello应助至乐无乐采纳,获得10
32秒前
33秒前
a成发布了新的文献求助10
35秒前
36秒前
36秒前
xianxian发布了新的文献求助10
37秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102