Retrieval-Augmented Generation–Enabled GPT-4 for Clinical Trial Screening

临床试验 计算机科学 计算生物学 医学 情报检索 环境科学 生物 内科学
作者
Ozan Ünlü,Jiyeon Shin,Charlotte Mailly,Michael Oates,Michela Tucci,Matthew Varugheese,Kavishwar B. Wagholikar,Fei Wang,Benjamin M. Scirica,Alexander Blood,Samuel Aronson
标识
DOI:10.1056/aioa2400181
摘要

BackgroundScreening participants in clinical trials is an error-prone and labor-intensive process that requires significant time and resources. Large language models such as generative pretrained transformer 4 (GPT-4) present an opportunity to enhance the screening process with advanced natural language processing. This study evaluates the utility of a Retrieval-Augmented Generation (RAG)–enabled GPT-4 system to improve the accuracy, efficiency, and reliability of screening for a trial involving patients with symptomatic heart failure.MethodsThe ongoing Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF; ClinicalTrials.gov number, NCT05734690) trial identifies potential participants through electronic health record (EHR) queries followed by manual reviews by trained but nonlicensed study staff. To determine patient eligibility for the COPILOT-HF study that is not identifiable by structured EHR queries, we developed RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review (RECTIFIER), a clinical note–based, question-answering system powered by RAG and GPT-4. We used clinical notes on 100, 282, and 1894 patients for development, validation, and test datasets, respectively. An expert clinician conducted a blinded review to establish "gold standard" answers to 13 target criteria questions. We calculated performance metrics (sensitivity, specificity, accuracy, and Matthews correlation coefficient [MCC]) in determining patient eligibility for each target criterion and for each of four screening methods (study staff, RECTIFIER with a single-question strategy, RECTIFIER with a combined-question strategy, and RECTIFIER with GPT-3.5 instead of GPT-4).ResultsThe RECTIFIER and COPILOT-HF study staff's answers closely aligned with the expert clinicians' answers across the target criteria, with accuracy ranging between 97.9% and 100% (MCC, 0.837 and 1) for RECTIFIER and between 91.7% and 100% (MCC, 0.644 and 1) for the study staff. RECTIFIER performed better than the study staff in determining symptomatic heart failure, with an accuracy of 97.9% versus 91.7% and an MCC of 0.924 versus 0.721, respectively. Overall, the sensitivity and specificity for determining patient eligibility with RECTIFIER were 92.3% and 93.9%, respectively, and 90.1% and 83.6% with the study staff. With RECTIFIER, the single-question approach to determining eligibility resulted in an average cost of 11 cents per patient, and the combined-question approach resulted in an average cost of 2 cents per patient.ConclusionsLarge language model–based solutions such as RECTIFIER can significantly enhance clinical trial screening performance and reduce costs by automating the screening process. However, integrating such technologies requires careful consideration of potential hazards and should include safeguards such as final clinician review. (Funded by the Accelerator for Clinical Transformation [ACT]; ClinicalTrials.gov number, NCT05734690.)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6.1应助王一帆采纳,获得10
刚刚
弱水完成签到,获得积分0
1秒前
1秒前
qinjiayin发布了新的文献求助10
2秒前
星辰大海应助李子恒采纳,获得10
2秒前
Zack完成签到,获得积分10
3秒前
4秒前
4秒前
多情新蕾发布了新的文献求助10
4秒前
上官若男应助云朵0810采纳,获得10
5秒前
脑洞疼应助李鸣笛采纳,获得10
5秒前
完美世界应助坐看云起采纳,获得10
5秒前
辣子鸡完成签到,获得积分20
5秒前
斐乐完成签到,获得积分10
5秒前
HeatherMI发布了新的文献求助10
6秒前
余生完成签到,获得积分10
6秒前
7秒前
单纯如柏完成签到,获得积分10
7秒前
机灵的中蓝完成签到 ,获得积分10
7秒前
xyg发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
melina完成签到 ,获得积分10
7秒前
尊敬的紫雪完成签到 ,获得积分10
7秒前
8秒前
乐乐乐应助搜大有采纳,获得10
9秒前
乂领域发布了新的文献求助10
9秒前
9秒前
舒适不言发布了新的文献求助10
10秒前
不想说完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
生化老子发布了新的文献求助10
11秒前
从容的柜子完成签到 ,获得积分10
11秒前
xyg完成签到,获得积分10
12秒前
13秒前
CharlieYue发布了新的文献求助10
13秒前
LY完成签到,获得积分10
13秒前
周以情完成签到,获得积分10
13秒前
M茗完成签到,获得积分20
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752683
求助须知:如何正确求助?哪些是违规求助? 5476106
关于积分的说明 15374754
捐赠科研通 4891582
什么是DOI,文献DOI怎么找? 2630561
邀请新用户注册赠送积分活动 1578788
关于科研通互助平台的介绍 1534675