Retrieval-Augmented Generation–Enabled GPT-4 for Clinical Trial Screening

临床试验 计算机科学 计算生物学 医学 情报检索 环境科学 生物 内科学
作者
Ozan Ünlü,Jiyeon Shin,Charlotte Mailly,Michael Oates,Michela Tucci,Matthew Varugheese,Kavishwar B. Wagholikar,Fei Wang,Benjamin M. Scirica,Alexander Blood,Samuel Aronson
标识
DOI:10.1056/aioa2400181
摘要

BackgroundScreening participants in clinical trials is an error-prone and labor-intensive process that requires significant time and resources. Large language models such as generative pretrained transformer 4 (GPT-4) present an opportunity to enhance the screening process with advanced natural language processing. This study evaluates the utility of a Retrieval-Augmented Generation (RAG)–enabled GPT-4 system to improve the accuracy, efficiency, and reliability of screening for a trial involving patients with symptomatic heart failure.MethodsThe ongoing Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF; ClinicalTrials.gov number, NCT05734690) trial identifies potential participants through electronic health record (EHR) queries followed by manual reviews by trained but nonlicensed study staff. To determine patient eligibility for the COPILOT-HF study that is not identifiable by structured EHR queries, we developed RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review (RECTIFIER), a clinical note–based, question-answering system powered by RAG and GPT-4. We used clinical notes on 100, 282, and 1894 patients for development, validation, and test datasets, respectively. An expert clinician conducted a blinded review to establish "gold standard" answers to 13 target criteria questions. We calculated performance metrics (sensitivity, specificity, accuracy, and Matthews correlation coefficient [MCC]) in determining patient eligibility for each target criterion and for each of four screening methods (study staff, RECTIFIER with a single-question strategy, RECTIFIER with a combined-question strategy, and RECTIFIER with GPT-3.5 instead of GPT-4).ResultsThe RECTIFIER and COPILOT-HF study staff's answers closely aligned with the expert clinicians' answers across the target criteria, with accuracy ranging between 97.9% and 100% (MCC, 0.837 and 1) for RECTIFIER and between 91.7% and 100% (MCC, 0.644 and 1) for the study staff. RECTIFIER performed better than the study staff in determining symptomatic heart failure, with an accuracy of 97.9% versus 91.7% and an MCC of 0.924 versus 0.721, respectively. Overall, the sensitivity and specificity for determining patient eligibility with RECTIFIER were 92.3% and 93.9%, respectively, and 90.1% and 83.6% with the study staff. With RECTIFIER, the single-question approach to determining eligibility resulted in an average cost of 11 cents per patient, and the combined-question approach resulted in an average cost of 2 cents per patient.ConclusionsLarge language model–based solutions such as RECTIFIER can significantly enhance clinical trial screening performance and reduce costs by automating the screening process. However, integrating such technologies requires careful consideration of potential hazards and should include safeguards such as final clinician review. (Funded by the Accelerator for Clinical Transformation [ACT]; ClinicalTrials.gov number, NCT05734690.)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emma发布了新的文献求助10
刚刚
刚刚
刚刚
李禾和完成签到,获得积分10
刚刚
快乐的猪发布了新的文献求助10
刚刚
普鲁卡因发布了新的文献求助10
刚刚
多情高丽完成签到 ,获得积分10
1秒前
1秒前
pray发布了新的文献求助10
1秒前
Cat完成签到,获得积分0
1秒前
风中的丝袜完成签到,获得积分10
1秒前
Leffzeng发布了新的文献求助10
1秒前
在水一方应助xiyueQAQ采纳,获得10
1秒前
Rr发布了新的文献求助10
1秒前
jinx123456完成签到,获得积分10
1秒前
zy发布了新的文献求助10
2秒前
Dawn完成签到 ,获得积分10
2秒前
Lillianzhu1完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
biye完成签到 ,获得积分10
3秒前
4秒前
斯文文龙完成签到,获得积分10
4秒前
tRNA完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
5秒前
ljforever完成签到,获得积分10
5秒前
tongtong555完成签到 ,获得积分10
5秒前
zhangliangfu完成签到,获得积分10
6秒前
共享精神应助迅速的岩采纳,获得10
6秒前
zik应助周游采纳,获得50
6秒前
板栗小狗完成签到,获得积分10
6秒前
所所应助loogn7采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017