已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Retrieval-Augmented Generation–Enabled GPT-4 for Clinical Trial Screening

临床试验 计算机科学 计算生物学 医学 情报检索 环境科学 生物 内科学
作者
Ozan Ünlü,Jiyeon Shin,Charlotte Mailly,Michael Oates,Michela Tucci,Matthew Varugheese,Kavishwar B. Wagholikar,Fei Wang,Benjamin M. Scirica,Alexander Blood,Samuel Aronson
标识
DOI:10.1056/aioa2400181
摘要

BackgroundScreening participants in clinical trials is an error-prone and labor-intensive process that requires significant time and resources. Large language models such as generative pretrained transformer 4 (GPT-4) present an opportunity to enhance the screening process with advanced natural language processing. This study evaluates the utility of a Retrieval-Augmented Generation (RAG)–enabled GPT-4 system to improve the accuracy, efficiency, and reliability of screening for a trial involving patients with symptomatic heart failure.MethodsThe ongoing Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF; ClinicalTrials.gov number, NCT05734690) trial identifies potential participants through electronic health record (EHR) queries followed by manual reviews by trained but nonlicensed study staff. To determine patient eligibility for the COPILOT-HF study that is not identifiable by structured EHR queries, we developed RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review (RECTIFIER), a clinical note–based, question-answering system powered by RAG and GPT-4. We used clinical notes on 100, 282, and 1894 patients for development, validation, and test datasets, respectively. An expert clinician conducted a blinded review to establish "gold standard" answers to 13 target criteria questions. We calculated performance metrics (sensitivity, specificity, accuracy, and Matthews correlation coefficient [MCC]) in determining patient eligibility for each target criterion and for each of four screening methods (study staff, RECTIFIER with a single-question strategy, RECTIFIER with a combined-question strategy, and RECTIFIER with GPT-3.5 instead of GPT-4).ResultsThe RECTIFIER and COPILOT-HF study staff's answers closely aligned with the expert clinicians' answers across the target criteria, with accuracy ranging between 97.9% and 100% (MCC, 0.837 and 1) for RECTIFIER and between 91.7% and 100% (MCC, 0.644 and 1) for the study staff. RECTIFIER performed better than the study staff in determining symptomatic heart failure, with an accuracy of 97.9% versus 91.7% and an MCC of 0.924 versus 0.721, respectively. Overall, the sensitivity and specificity for determining patient eligibility with RECTIFIER were 92.3% and 93.9%, respectively, and 90.1% and 83.6% with the study staff. With RECTIFIER, the single-question approach to determining eligibility resulted in an average cost of 11 cents per patient, and the combined-question approach resulted in an average cost of 2 cents per patient.ConclusionsLarge language model–based solutions such as RECTIFIER can significantly enhance clinical trial screening performance and reduce costs by automating the screening process. However, integrating such technologies requires careful consideration of potential hazards and should include safeguards such as final clinician review. (Funded by the Accelerator for Clinical Transformation [ACT]; ClinicalTrials.gov number, NCT05734690.)

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊发布了新的文献求助10
刚刚
LY发布了新的文献求助10
4秒前
5秒前
6秒前
9秒前
彭于晏应助cheese采纳,获得10
9秒前
小熊完成签到 ,获得积分10
9秒前
hehexuexi1关注了科研通微信公众号
9秒前
刘婉敏完成签到 ,获得积分10
11秒前
小波完成签到 ,获得积分10
12秒前
13秒前
14秒前
14秒前
14秒前
15秒前
Tomsen发布了新的文献求助10
17秒前
XCY发布了新的文献求助10
18秒前
高高发布了新的文献求助10
19秒前
陶醉紫菜发布了新的文献求助10
19秒前
XLX发布了新的文献求助10
19秒前
Army616完成签到,获得积分10
19秒前
ty12390发布了新的文献求助10
20秒前
22秒前
22秒前
chenyuns发布了新的文献求助10
23秒前
23秒前
李健应助slz采纳,获得10
25秒前
song完成签到 ,获得积分10
25秒前
25秒前
26秒前
大大大忽悠完成签到 ,获得积分10
26秒前
XCY完成签到,获得积分10
26秒前
枫泾完成签到,获得积分10
27秒前
SciGPT应助suodeheng采纳,获得20
27秒前
27秒前
27秒前
28秒前
魔幻安南完成签到 ,获得积分10
28秒前
30秒前
sswbzh应助yuebaoji采纳,获得50
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779546
求助须知:如何正确求助?哪些是违规求助? 5648402
关于积分的说明 15451994
捐赠科研通 4910795
什么是DOI,文献DOI怎么找? 2642900
邀请新用户注册赠送积分活动 1590549
关于科研通互助平台的介绍 1544981