Meta-path structured graph pre-training for improving knowledge tracing in intelligent tutoring

计算机科学 追踪 图形 智能教学系统 路径(计算) 知识图 人工智能 机器学习 理论计算机科学 程序设计语言
作者
Menglin Zhu,Liqing Qiu,Jingcheng Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:254: 124451-124451
标识
DOI:10.1016/j.eswa.2024.124451
摘要

Knowledge tracing (KT) aims to predict students' future performance by tracking their learning behaviors in intelligent tutoring systems (ITS). In KT, three main types of entities are involved: students, exercises, and knowledge concepts. Graph structures provide an effective framework for establishing relationships between different entities. However, existing KT methods have neglected complex connections and implicit relational features, thus facing challenges in capturing high-order information in educational data. To this end, this paper proposes MPSG, a Meta-Path Structured Graph method designed to harness high-order information between entities to pre-train informative exercise embeddings for improving KT. Technically, structured by different meta-paths, four relation graphs are derived to establish implicit cross-entity relationships. On each graph, the surrounding neighbors of each node are then obtained through an intimacy-based sampling strategy. Subsequently, during the representation learning stage, node features under different meta-path views are generated and then aggregated to obtain the final exercise embeddings. The learned embeddings are optimized through three auxiliary tasks, anchored within a self-supervised learning paradigm. Extensive experiments across four public datasets demonstrate that our method can significantly enhance the predictive performance of downstream KT models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
痴情的萃完成签到,获得积分10
1秒前
1秒前
愉快草莓发布了新的文献求助10
1秒前
Lucas应助yyyyyqy采纳,获得10
3秒前
3秒前
丫丫完成签到,获得积分10
5秒前
朴素的凉面完成签到,获得积分10
6秒前
7秒前
达达利亚发布了新的文献求助10
7秒前
7秒前
Jane发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
JamesPei应助zry采纳,获得30
8秒前
英姑应助吱哦周采纳,获得10
8秒前
10秒前
11秒前
FOOL完成签到,获得积分10
11秒前
Meiyu发布了新的文献求助10
11秒前
11秒前
小白发布了新的文献求助10
11秒前
11秒前
Yziii应助hihi采纳,获得50
12秒前
12秒前
13秒前
13秒前
14秒前
啦啦啦啦啦完成签到 ,获得积分10
14秒前
烟花应助JX采纳,获得10
14秒前
小樊同学完成签到,获得积分10
14秒前
15秒前
16秒前
樱桃味的火苗完成签到,获得积分10
16秒前
小黄发布了新的文献求助10
16秒前
Yy完成签到 ,获得积分10
16秒前
Klaatu发布了新的文献求助10
17秒前
可爱的函函应助小田采纳,获得10
17秒前
李健应助欢欢采纳,获得10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905