多不饱和脂肪酸
酶
细胞生物学
生物化学
化学
生物
脂肪酸
作者
Xin Li,Gai Huang,Yifan Zhou,Li Wang,Yuxian Zhu
标识
DOI:10.1016/j.xplc.2024.101003
摘要
E3 ligases are key enzymes required for protein degradation. Here, we identified a C3H2C3 RING domain-containing E3 ubiquitin ligase gene named GhATL68b. It is preferentially and highly expressed in developing cotton fiber cells and shows greater conservation in plants than in animals or archaea. The four orthologous copies of this gene in various diploid cottons and eight in the allotetraploid G. hirsutum were found to have originated from a single common ancestor that can be traced back to Chlamydomonas reinhardtii at about 992 million years ago. Structural variations in the GhATL68b promoter regions of G. hirsutum, G. herbaceum, G. arboreum, and G. raimondii are correlated with significantly different methylation patterns. Homozygous CRISPR-Cas9 knockout cotton lines exhibit significant reductions in fiber quality traits, including upper-half mean length, elongation at break, uniformity, and mature fiber weight. In vitro ubiquitination and cell-free protein degradation assays revealed that GhATL68b modulates the homeostasis of 2,4-dienoyl-CoA reductase, a rate-limiting enzyme for the β-oxidation of polyunsaturated fatty acids (PUFAs), via the ubiquitin proteasome pathway. Fiber cells harvested from these knockout mutants contain significantly lower levels of PUFAs important for production of glycerophospholipids and regulation of plasma membrane fluidity. The fiber growth defects of the mutant can be fully rescued by the addition of linolenic acid (C18:3), the most abundant type of PUFA, to the ovule culture medium. This experimentally characterized C3H2C3 type E3 ubiquitin ligase involved in regulating fiber cell elongation may provide us with a new genetic target for improved cotton lint production.
科研通智能强力驱动
Strongly Powered by AbleSci AI