Koopman neural operator as a mesh-free solver of non-linear partial differential equations

偏微分方程 操作员(生物学) 解算器 应用数学 人工神经网络 计算机科学 数学 数学分析 数学优化 人工智能 生物化学 化学 抑制因子 转录因子 基因
作者
Wei Xiong,Xiaomeng Huang,Ziyang Zhang,Ruixuan Deng,Pei Sun,Yang Tian
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:513: 113194-113194 被引量:4
标识
DOI:10.1016/j.jcp.2024.113194
摘要

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-Bénard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modeling, and precipitation forecasting).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不配.应助Twistti采纳,获得10
1秒前
2秒前
mengyijie发布了新的文献求助10
3秒前
开放剑鬼完成签到,获得积分10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
00完成签到,获得积分10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
4秒前
不配.应助萌宝采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
江飞鸟应助萌宝采纳,获得10
5秒前
cdy应助科研通管家采纳,获得10
5秒前
就离谱应助科研通管家采纳,获得10
5秒前
鹿飞松应助科研通管家采纳,获得10
5秒前
zho应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
7秒前
9秒前
PC完成签到,获得积分10
10秒前
10秒前
小马哥完成签到,获得积分20
10秒前
tuo zhang完成签到,获得积分10
10秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625