Koopman neural operator as a mesh-free solver of non-linear partial differential equations

偏微分方程 操作员(生物学) 解算器 应用数学 人工神经网络 计算机科学 数学 数学分析 数学优化 人工智能 生物化学 转录因子 基因 抑制因子 化学
作者
Wei Xiong,Xiaomeng Huang,Ziyang Zhang,Ruixuan Deng,Pei Sun,Yang Tian
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:513: 113194-113194 被引量:4
标识
DOI:10.1016/j.jcp.2024.113194
摘要

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-Bénard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modeling, and precipitation forecasting).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nmeiko发布了新的文献求助10
2秒前
单薄的寻桃给单薄的寻桃的求助进行了留言
5秒前
7秒前
内向汽车完成签到,获得积分10
10秒前
可爱的函函应助文静人达采纳,获得10
19秒前
哭泣青烟完成签到 ,获得积分10
21秒前
明理如凡完成签到,获得积分20
21秒前
诚心八宝粥完成签到,获得积分10
23秒前
25秒前
28秒前
酷波er应助耍酷皮皮虾采纳,获得10
29秒前
英吉利25发布了新的文献求助10
30秒前
LDoll发布了新的文献求助10
35秒前
du完成签到 ,获得积分10
35秒前
36秒前
41秒前
Orange应助xuan采纳,获得10
42秒前
nmeiko完成签到,获得积分20
45秒前
xzgwbh完成签到,获得积分10
45秒前
科目三应助LDoll采纳,获得10
45秒前
47秒前
47秒前
浮游应助yiqi采纳,获得10
47秒前
wubinbin完成签到 ,获得积分10
47秒前
hjjjxxxx发布了新的文献求助30
50秒前
51秒前
不能吃了发布了新的文献求助10
51秒前
xuan发布了新的文献求助10
54秒前
hjjjxxxx完成签到,获得积分10
58秒前
nmeiko发布了新的文献求助10
59秒前
1分钟前
山屿发布了新的文献求助30
1分钟前
科研顺发布了新的文献求助10
1分钟前
AIDIN完成签到 ,获得积分10
1分钟前
1分钟前
ding应助Bismarck采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研顺完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538