Koopman neural operator as a mesh-free solver of non-linear partial differential equations

偏微分方程 操作员(生物学) 解算器 应用数学 人工神经网络 计算机科学 数学 数学分析 数学优化 人工智能 生物化学 化学 抑制因子 转录因子 基因
作者
Wei Xiong,Xiaomeng Huang,Ziyang Zhang,Ruixuan Deng,Pei Sun,Yang Tian
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:513: 113194-113194 被引量:4
标识
DOI:10.1016/j.jcp.2024.113194
摘要

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-Bénard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modeling, and precipitation forecasting).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小生完成签到,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
MASAMI发布了新的文献求助10
1秒前
Jasper应助葛一豪采纳,获得10
2秒前
烟花应助null采纳,获得10
2秒前
wipmzxu完成签到,获得积分10
2秒前
2秒前
2秒前
dan发布了新的文献求助10
3秒前
xxx发布了新的文献求助10
3秒前
愉快的花卷完成签到,获得积分10
3秒前
3秒前
黑曜石发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
下X下完成签到,获得积分20
4秒前
张乔然发布了新的文献求助10
4秒前
晞晞完成签到,获得积分10
5秒前
库里发布了新的文献求助10
5秒前
阿敬发布了新的文献求助30
6秒前
善良飞丹完成签到,获得积分10
6秒前
韩明轩发布了新的文献求助10
7秒前
公司账号2发布了新的文献求助10
7秒前
研友_VZG7GZ应助gg采纳,获得10
7秒前
一一发布了新的文献求助10
7秒前
longsay完成签到,获得积分10
7秒前
情怀应助qwp采纳,获得10
7秒前
8秒前
武淑晴发布了新的文献求助10
9秒前
在水一方应助刘小蕊采纳,获得10
9秒前
BareBear应助顺利的雪莲采纳,获得10
9秒前
张哈哈发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
12秒前
lucas发布了新的文献求助10
12秒前
素雅发布了新的文献求助10
12秒前
比比完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246