Infrared Thermography-based Temperature Detection of Key Components in Switchgear

开关设备 热成像 钥匙(锁) 遥感 红外线的 计算机科学 材料科学 工程类 电气工程 光学 地质学 计算机安全 物理
作者
Junyi Zhang,Peijiang Li,Ting You
标识
DOI:10.1109/isas61044.2024.10552500
摘要

With the continuous increase in the number of electric power facilities, relying on traditional manual inspections to maintain the efficiency and accuracy of the power grid is facing greater challenges. In the daily temperature detection of electric power equipment, advanced non-contact infrared thermal imaging technology is widely used in the field of switchgear state monitoring and fault diagnosis. To further improve the efficiency of temperature detection of key components in switchgears, this paper proposes an improved switchgear key component detection model based on YOLOv8. This improved model includes three key improvements aimed at enhancing the detection performance and real-time capability of the detection network. First, this paper introduces Tied Block Convolution to replace the convolutional layer in the original Bottleneck, significantly reducing the model's parameter count, making it more suitable for fast detection scenarios. Second, Large Separable Kernel Attention is introduced in the C2f module, which can capture long-distance contextual information, reducing the loss of critical information in low-resolution infrared images, thereby improving detection accuracy. Finally, this paper adopts the Shape-IoU loss function to replace CIoU, improving the model's accuracy in predicting bounding boxes and further enhancing detection precision. Through contrast experiment, the improved model showed a 1.1% increase in average precision (mAP) and a reduction of 5.5 million parameters compared to the original model. In the comparison of detection results on the test set, the improved model outperformed the comparison algorithms in scenarios where objects were occluded or backgrounds were blurry, further confirming the effectiveness of the improved model and demonstrating significant potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助玲子7采纳,获得10
1秒前
我是老大应助111采纳,获得10
4秒前
炙热逍遥完成签到 ,获得积分10
5秒前
zz完成签到,获得积分10
5秒前
研友_LJGoXn完成签到,获得积分10
6秒前
6秒前
吕培森完成签到 ,获得积分20
7秒前
SiDi发布了新的文献求助10
8秒前
温暖果汁完成签到,获得积分10
9秒前
ffl完成签到 ,获得积分10
11秒前
jojo发布了新的文献求助10
11秒前
12秒前
kelsey1015关注了科研通微信公众号
13秒前
SiDi完成签到,获得积分10
13秒前
宇宙发布了新的文献求助10
14秒前
陈chen完成签到,获得积分10
14秒前
16秒前
17秒前
骆子军完成签到 ,获得积分10
19秒前
CodeCraft应助Z.zz采纳,获得10
19秒前
宇宙完成签到,获得积分20
19秒前
天天开心发布了新的文献求助10
20秒前
lzp发布了新的文献求助10
20秒前
云青完成签到,获得积分10
20秒前
111发布了新的文献求助10
21秒前
23秒前
23秒前
小二郎应助lzp采纳,获得10
25秒前
25秒前
鲤鱼水池完成签到,获得积分10
26秒前
27秒前
29秒前
29秒前
Z.zz发布了新的文献求助10
30秒前
哈利发布了新的文献求助10
30秒前
开朗的保温杯完成签到,获得积分10
33秒前
lzp完成签到,获得积分20
35秒前
35秒前
Z.zz完成签到,获得积分10
35秒前
乔若灵完成签到 ,获得积分10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905