Infrared Thermography-based Temperature Detection of Key Components in Switchgear

开关设备 热成像 钥匙(锁) 遥感 红外线的 计算机科学 材料科学 工程类 电气工程 光学 地质学 计算机安全 物理
作者
Junyi Zhang,Peijiang Li,Ting You
标识
DOI:10.1109/isas61044.2024.10552500
摘要

With the continuous increase in the number of electric power facilities, relying on traditional manual inspections to maintain the efficiency and accuracy of the power grid is facing greater challenges. In the daily temperature detection of electric power equipment, advanced non-contact infrared thermal imaging technology is widely used in the field of switchgear state monitoring and fault diagnosis. To further improve the efficiency of temperature detection of key components in switchgears, this paper proposes an improved switchgear key component detection model based on YOLOv8. This improved model includes three key improvements aimed at enhancing the detection performance and real-time capability of the detection network. First, this paper introduces Tied Block Convolution to replace the convolutional layer in the original Bottleneck, significantly reducing the model's parameter count, making it more suitable for fast detection scenarios. Second, Large Separable Kernel Attention is introduced in the C2f module, which can capture long-distance contextual information, reducing the loss of critical information in low-resolution infrared images, thereby improving detection accuracy. Finally, this paper adopts the Shape-IoU loss function to replace CIoU, improving the model's accuracy in predicting bounding boxes and further enhancing detection precision. Through contrast experiment, the improved model showed a 1.1% increase in average precision (mAP) and a reduction of 5.5 million parameters compared to the original model. In the comparison of detection results on the test set, the improved model outperformed the comparison algorithms in scenarios where objects were occluded or backgrounds were blurry, further confirming the effectiveness of the improved model and demonstrating significant potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助JIE采纳,获得10
1秒前
伏地魔完成签到,获得积分10
1秒前
2秒前
yyf完成签到,获得积分10
2秒前
XWT完成签到,获得积分10
2秒前
虚安完成签到 ,获得积分10
2秒前
xqy完成签到 ,获得积分10
2秒前
啵乐乐发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
momo完成签到,获得积分10
4秒前
慕青应助饕餮1235采纳,获得10
4秒前
小蘑菇应助CC采纳,获得10
5秒前
白白完成签到,获得积分10
5秒前
5秒前
5秒前
苏苏完成签到,获得积分10
6秒前
6秒前
wu完成签到,获得积分10
6秒前
6秒前
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助111采纳,获得10
8秒前
Accept应助wintercyan采纳,获得20
8秒前
哲999完成签到,获得积分10
8秒前
Mian完成签到,获得积分10
8秒前
9秒前
9秒前
于嗣濠完成签到 ,获得积分10
9秒前
36456657应助CC采纳,获得10
9秒前
优雅山柏发布了新的文献求助10
10秒前
Jacky完成签到,获得积分10
10秒前
脑洞疼应助无情的白桃采纳,获得10
10秒前
mm发布了新的文献求助10
10秒前
11秒前
11秒前
zoko发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740