Information Density Enhancement Using Lossy Compression in DNA Data Storage

材料科学 有损压缩 信息存储 计算机数据存储 压缩(物理) 纳米技术 复合材料 计算机科学 数据库 计算机硬件 人工智能
作者
Seongjun Seo,Anshula Tandon,Keun Woo Lee,Jee‐Hyong Lee,Sung Ha Park
出处
期刊:Advanced Materials [Wiley]
被引量:2
标识
DOI:10.1002/adma.202403071
摘要

This study develops two deoxyribonucleic acid (DNA) lossy compression models, Models A and B, to encode grayscale images into DNA sequences, enhance information density, and enable high-fidelity image recovery. These models, distinguished by their handling of pixel domains and interpolation methods, offer a novel approach to data storage for DNA. Model A processes pixels in overlapped domains using linear interpolation (LI), whereas Model B uses non-overlapped domains with nearest-neighbor interpolation (NNI). Through a comparative analysis with Joint Photographic Experts Group (JPEG) compression, the DNA lossy compression models demonstrate competitive advantages in terms of information density and image quality restoration. The application of these models to the Modified National Institute of Standards and Technology (MNIST) dataset reveals their efficiency and the recognizability of decompressed images, which is validated by convolutional neural network (CNN) performance. In particular, Model B2, a version of Model B, emerges as an effective method for balancing high information density (surpassing over 20 times the typical densities of two bits per nucleotide) with reasonably good image quality. These findings highlight the potential of DNA-based data storage systems for high-density and efficient compression, indicating a promising future for biological data storage solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SciGPT应助贤yu采纳,获得10
刚刚
1秒前
ww完成签到,获得积分10
1秒前
SYLH应助啊哈采纳,获得20
2秒前
2秒前
3秒前
3秒前
4秒前
含蓄文博完成签到 ,获得积分10
4秒前
田様应助hai采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
刘雨森完成签到 ,获得积分10
6秒前
大大怪发布了新的文献求助10
6秒前
小马甲应助guantlv采纳,获得10
6秒前
李成恩完成签到 ,获得积分10
7秒前
淡然冬灵发布了新的文献求助10
7秒前
东方欲晓完成签到 ,获得积分0
7秒前
INBI发布了新的文献求助10
7秒前
万能图书馆应助lxy采纳,获得10
8秒前
hrzmlily发布了新的文献求助10
8秒前
zhaomr完成签到,获得积分10
8秒前
8秒前
搬运工完成签到,获得积分10
8秒前
9秒前
xcx完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
充电宝应助dearcih采纳,获得10
10秒前
半夏完成签到,获得积分10
10秒前
10秒前
JayWu发布了新的文献求助10
11秒前
苹果发布了新的文献求助30
11秒前
che完成签到,获得积分10
11秒前
11秒前
12秒前
情怀应助笨笨含羞草采纳,获得10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594