Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction

人工智能 随机森林 机器学习 计算机科学 人工神经网络 特征选择 朴素贝叶斯分类器 降维 决策树 分类器(UML) 随机子空间法 集成学习 模式识别(心理学) 支持向量机
作者
Arifur Rahman,Sakib Zaman,Shahriar Parvej,H. M. Abdul Fattah
标识
DOI:10.1109/iceeict62016.2024.10534427
摘要

Breast cancer's global prevalence highlights the need for the development of precise and reliable diagnostic tools. The objective of this study is to contribute to the growing body of knowledge in breast cancer diagnosis, highlighting the potential of a range of classifier algorithms, soft and hard voting ensemble approaches, and neural networks as potent tools in medical applications. These models were utilized to assess the Wisconsin Breast Cancer dataset obtained from UCI Machine Learning repository, consisting of 569 samples and 30 features. Besides, we utilized Principal Component Analysis (PCA) and Variance Inflation Factors (VIF) techniques to perform feature selection and dimensionality reduction on the standardized and original features respectively. After conducting PCA analysis, a variety of classifier models, including k-nearest neighbors (KNN), Lo-gistic Regression (LR), Decision Tree (DT), LightGBM (LGBM), XGBoost (XGB), Random Forest (RF), and Naive Bayes (NB), were employed. Moreover, after the VIF analysis, these classifier models and a Neural Network (NN) model were put into action. Subsequently, the best three and best five classifier algorithms were determined using accuracy metrics, then both soft and hard voting ensemble were executed on these algorithms. The neural network (NN) model underwent training for 500 epochs since beyond that point, the loss curves displayed nearly constant values. This model (NN) were compiled with "adam" optimizer along with binary crossentropy as loss function. We observed our ensemble strategies demonstrated superior performance in accuracy compared to all existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HANXIA完成签到,获得积分10
1秒前
1秒前
2秒前
研友_nxy9XZ完成签到,获得积分10
3秒前
3秒前
3秒前
cyz完成签到,获得积分10
4秒前
ChenChen发布了新的文献求助10
6秒前
苏小安发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
cyz发布了新的文献求助20
7秒前
旺旺饼干发布了新的文献求助10
8秒前
kyouu发布了新的文献求助10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
张国强发布了新的文献求助10
12秒前
贪玩板栗发布了新的文献求助10
12秒前
小冰完成签到,获得积分10
12秒前
12秒前
依兰飞舞完成签到,获得积分10
13秒前
整齐乌发布了新的文献求助10
13秒前
23关闭了23文献求助
13秒前
14秒前
桐桐应助MET1采纳,获得10
15秒前
15秒前
dq1992发布了新的文献求助10
16秒前
zyw发布了新的文献求助10
16秒前
16秒前
16秒前
钱大大发布了新的文献求助10
16秒前
ACMI发布了新的文献求助30
17秒前
烟花应助旺旺饼干采纳,获得10
17秒前
无心的小霸王完成签到 ,获得积分10
17秒前
18秒前
哈哈不哈哈完成签到 ,获得积分10
18秒前
hzk完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465