亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction

人工智能 随机森林 机器学习 计算机科学 人工神经网络 特征选择 朴素贝叶斯分类器 降维 决策树 分类器(UML) 随机子空间法 集成学习 模式识别(心理学) 支持向量机
作者
Arifur Rahman,Sakib Zaman,Shahriar Parvej,H. M. Abdul Fattah
标识
DOI:10.1109/iceeict62016.2024.10534427
摘要

Breast cancer's global prevalence highlights the need for the development of precise and reliable diagnostic tools. The objective of this study is to contribute to the growing body of knowledge in breast cancer diagnosis, highlighting the potential of a range of classifier algorithms, soft and hard voting ensemble approaches, and neural networks as potent tools in medical applications. These models were utilized to assess the Wisconsin Breast Cancer dataset obtained from UCI Machine Learning repository, consisting of 569 samples and 30 features. Besides, we utilized Principal Component Analysis (PCA) and Variance Inflation Factors (VIF) techniques to perform feature selection and dimensionality reduction on the standardized and original features respectively. After conducting PCA analysis, a variety of classifier models, including k-nearest neighbors (KNN), Lo-gistic Regression (LR), Decision Tree (DT), LightGBM (LGBM), XGBoost (XGB), Random Forest (RF), and Naive Bayes (NB), were employed. Moreover, after the VIF analysis, these classifier models and a Neural Network (NN) model were put into action. Subsequently, the best three and best five classifier algorithms were determined using accuracy metrics, then both soft and hard voting ensemble were executed on these algorithms. The neural network (NN) model underwent training for 500 epochs since beyond that point, the loss curves displayed nearly constant values. This model (NN) were compiled with "adam" optimizer along with binary crossentropy as loss function. We observed our ensemble strategies demonstrated superior performance in accuracy compared to all existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Chenzr完成签到,获得积分10
21秒前
科研小白白白完成签到,获得积分10
35秒前
57秒前
情怀应助欢喜怀绿采纳,获得30
1分钟前
1分钟前
1分钟前
朱珠贝完成签到,获得积分10
1分钟前
xxxc发布了新的文献求助10
1分钟前
图南发布了新的文献求助10
1分钟前
1分钟前
Lorin完成签到 ,获得积分10
1分钟前
莘莘发布了新的文献求助10
1分钟前
图南完成签到,获得积分10
1分钟前
1分钟前
llm发布了新的文献求助10
1分钟前
1分钟前
xxxc完成签到,获得积分20
1分钟前
搜集达人应助莘莘采纳,获得10
1分钟前
1分钟前
莘莘完成签到,获得积分10
1分钟前
小二郎应助Llawite采纳,获得10
1分钟前
隐形曼青应助llm采纳,获得10
1分钟前
1分钟前
Swii发布了新的文献求助10
2分钟前
wanli完成签到,获得积分10
2分钟前
彭于晏应助ste56采纳,获得10
2分钟前
2分钟前
wangch198201完成签到 ,获得积分10
2分钟前
慧慧发布了新的文献求助10
2分钟前
3分钟前
ste56发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
叶十七完成签到,获得积分10
3分钟前
欢喜怀绿发布了新的文献求助30
3分钟前
FashionBoy应助ste56采纳,获得10
3分钟前
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880894
关于积分的说明 8217276
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377786
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623327