Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction

人工智能 随机森林 机器学习 计算机科学 人工神经网络 特征选择 朴素贝叶斯分类器 降维 决策树 分类器(UML) 随机子空间法 集成学习 模式识别(心理学) 支持向量机
作者
Arifur Rahman,Sakib Zaman,Shahriar Parvej,H. M. Abdul Fattah
标识
DOI:10.1109/iceeict62016.2024.10534427
摘要

Breast cancer's global prevalence highlights the need for the development of precise and reliable diagnostic tools. The objective of this study is to contribute to the growing body of knowledge in breast cancer diagnosis, highlighting the potential of a range of classifier algorithms, soft and hard voting ensemble approaches, and neural networks as potent tools in medical applications. These models were utilized to assess the Wisconsin Breast Cancer dataset obtained from UCI Machine Learning repository, consisting of 569 samples and 30 features. Besides, we utilized Principal Component Analysis (PCA) and Variance Inflation Factors (VIF) techniques to perform feature selection and dimensionality reduction on the standardized and original features respectively. After conducting PCA analysis, a variety of classifier models, including k-nearest neighbors (KNN), Lo-gistic Regression (LR), Decision Tree (DT), LightGBM (LGBM), XGBoost (XGB), Random Forest (RF), and Naive Bayes (NB), were employed. Moreover, after the VIF analysis, these classifier models and a Neural Network (NN) model were put into action. Subsequently, the best three and best five classifier algorithms were determined using accuracy metrics, then both soft and hard voting ensemble were executed on these algorithms. The neural network (NN) model underwent training for 500 epochs since beyond that point, the loss curves displayed nearly constant values. This model (NN) were compiled with "adam" optimizer along with binary crossentropy as loss function. We observed our ensemble strategies demonstrated superior performance in accuracy compared to all existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
小小酥被卷了完成签到,获得积分10
1秒前
迷途羔羊发布了新的文献求助10
1秒前
xixi完成签到,获得积分10
1秒前
美满夕阳完成签到,获得积分10
1秒前
Jasper应助叶白山采纳,获得10
2秒前
2秒前
啊怙纲完成签到 ,获得积分10
4秒前
HBY发布了新的文献求助10
5秒前
6秒前
ESTHERDY发布了新的文献求助10
6秒前
6秒前
1111完成签到,获得积分10
6秒前
7秒前
田様应助入变采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
vvvvvvvvvvvv111完成签到,获得积分10
9秒前
脑洞疼应助大宝君采纳,获得10
10秒前
徐籍发布了新的文献求助10
10秒前
natuer完成签到,获得积分10
11秒前
coconut完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
13秒前
California完成签到 ,获得积分10
13秒前
natuer发布了新的文献求助20
14秒前
15秒前
高高烙完成签到,获得积分10
15秒前
情怀应助某人采纳,获得10
15秒前
陈航完成签到,获得积分10
16秒前
kmzzy完成签到 ,获得积分10
17秒前
17秒前
小白熊应助fu采纳,获得20
17秒前
sinlar发布了新的文献求助10
17秒前
南瓜气气完成签到,获得积分10
18秒前
Jiaox发布了新的文献求助10
19秒前
20秒前
牛牛超人完成签到,获得积分10
21秒前
杏杏发布了新的文献求助10
22秒前
传奇3应助郑泽航采纳,获得10
22秒前
潮流季关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382