Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction

人工智能 随机森林 机器学习 计算机科学 人工神经网络 特征选择 朴素贝叶斯分类器 降维 决策树 分类器(UML) 随机子空间法 集成学习 模式识别(心理学) 支持向量机
作者
Arifur Rahman,Sakib Zaman,Shahriar Parvej,H. M. Abdul Fattah
标识
DOI:10.1109/iceeict62016.2024.10534427
摘要

Breast cancer's global prevalence highlights the need for the development of precise and reliable diagnostic tools. The objective of this study is to contribute to the growing body of knowledge in breast cancer diagnosis, highlighting the potential of a range of classifier algorithms, soft and hard voting ensemble approaches, and neural networks as potent tools in medical applications. These models were utilized to assess the Wisconsin Breast Cancer dataset obtained from UCI Machine Learning repository, consisting of 569 samples and 30 features. Besides, we utilized Principal Component Analysis (PCA) and Variance Inflation Factors (VIF) techniques to perform feature selection and dimensionality reduction on the standardized and original features respectively. After conducting PCA analysis, a variety of classifier models, including k-nearest neighbors (KNN), Lo-gistic Regression (LR), Decision Tree (DT), LightGBM (LGBM), XGBoost (XGB), Random Forest (RF), and Naive Bayes (NB), were employed. Moreover, after the VIF analysis, these classifier models and a Neural Network (NN) model were put into action. Subsequently, the best three and best five classifier algorithms were determined using accuracy metrics, then both soft and hard voting ensemble were executed on these algorithms. The neural network (NN) model underwent training for 500 epochs since beyond that point, the loss curves displayed nearly constant values. This model (NN) were compiled with "adam" optimizer along with binary crossentropy as loss function. We observed our ensemble strategies demonstrated superior performance in accuracy compared to all existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助向七郎采纳,获得10
1秒前
nana完成签到,获得积分10
1秒前
科目三应助明亮如花采纳,获得10
1秒前
1秒前
wuuToiiin完成签到,获得积分10
2秒前
阿里院士完成签到,获得积分10
2秒前
2秒前
scc发布了新的文献求助10
2秒前
文艺的蜜蜂完成签到 ,获得积分10
2秒前
yllcjl发布了新的文献求助10
3秒前
Mercury发布了新的文献求助10
3秒前
半夏完成签到 ,获得积分20
3秒前
3秒前
房东的猫发布了新的文献求助10
3秒前
Suchen完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
WYxipu完成签到,获得积分20
5秒前
卷aaaa完成签到,获得积分10
5秒前
搜集达人应助kks569采纳,获得10
6秒前
6秒前
6秒前
李爱国应助米酒汤圆采纳,获得10
6秒前
迷路藏鸟发布了新的文献求助10
6秒前
单薄夏山完成签到,获得积分10
7秒前
万能图书馆应助丑小鸭采纳,获得10
7秒前
小诸葛完成签到,获得积分10
7秒前
李健的粉丝团团长应助ym采纳,获得10
7秒前
北城无夏发布了新的文献求助10
7秒前
8秒前
禾伙人发布了新的文献求助10
8秒前
8秒前
8秒前
gxy12完成签到,获得积分10
9秒前
学术垃圾完成签到,获得积分10
9秒前
li完成签到,获得积分20
9秒前
9秒前
IamHK完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485