Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction

人工智能 随机森林 机器学习 计算机科学 人工神经网络 特征选择 朴素贝叶斯分类器 降维 决策树 分类器(UML) 随机子空间法 集成学习 模式识别(心理学) 支持向量机
作者
Arifur Rahman,Sakib Zaman,Shahriar Parvej,H. M. Abdul Fattah
标识
DOI:10.1109/iceeict62016.2024.10534427
摘要

Breast cancer's global prevalence highlights the need for the development of precise and reliable diagnostic tools. The objective of this study is to contribute to the growing body of knowledge in breast cancer diagnosis, highlighting the potential of a range of classifier algorithms, soft and hard voting ensemble approaches, and neural networks as potent tools in medical applications. These models were utilized to assess the Wisconsin Breast Cancer dataset obtained from UCI Machine Learning repository, consisting of 569 samples and 30 features. Besides, we utilized Principal Component Analysis (PCA) and Variance Inflation Factors (VIF) techniques to perform feature selection and dimensionality reduction on the standardized and original features respectively. After conducting PCA analysis, a variety of classifier models, including k-nearest neighbors (KNN), Lo-gistic Regression (LR), Decision Tree (DT), LightGBM (LGBM), XGBoost (XGB), Random Forest (RF), and Naive Bayes (NB), were employed. Moreover, after the VIF analysis, these classifier models and a Neural Network (NN) model were put into action. Subsequently, the best three and best five classifier algorithms were determined using accuracy metrics, then both soft and hard voting ensemble were executed on these algorithms. The neural network (NN) model underwent training for 500 epochs since beyond that point, the loss curves displayed nearly constant values. This model (NN) were compiled with "adam" optimizer along with binary crossentropy as loss function. We observed our ensemble strategies demonstrated superior performance in accuracy compared to all existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助caicai采纳,获得10
刚刚
bingzichuan发布了新的文献求助10
刚刚
1秒前
隐形曼青应助金乌采纳,获得10
1秒前
谢大喵发布了新的文献求助20
1秒前
1秒前
2秒前
夹心完成签到,获得积分10
2秒前
君莫笑完成签到,获得积分10
3秒前
内向问旋发布了新的文献求助10
3秒前
犹豫的铅笔完成签到,获得积分10
3秒前
ding应助DRDOC采纳,获得10
3秒前
3秒前
xh93完成签到,获得积分10
4秒前
PDL1完成签到,获得积分10
4秒前
YY发布了新的文献求助10
4秒前
4秒前
4秒前
Asystasia7完成签到,获得积分10
5秒前
5秒前
我是老大应助樱sky采纳,获得10
5秒前
yhy完成签到,获得积分10
5秒前
6秒前
超帅凡阳完成签到,获得积分10
6秒前
魏欣雨完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
tf完成签到,获得积分10
7秒前
英俊的铭应助lhh采纳,获得10
7秒前
婷_1988发布了新的文献求助10
7秒前
rrrrrrun发布了新的文献求助10
8秒前
XLYIDNNQJB完成签到 ,获得积分10
8秒前
jiajia发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444