Research on multi-objective optimisation of product form design based on kansei engineering

感性工学 感性 托普西斯 产品(数学) 产品设计 领域(数学) 多目标优化 工程类 熵(时间箭头) 进化算法 数学优化 集合(抽象数据类型) 新产品开发 计算机科学 工业工程 机器学习 数学 人工智能 运筹学 几何学 物理 人机交互 量子力学 营销 纯数学 业务 程序设计语言
作者
Wen-Yu Tang,Ze‐Rui Xiang,Tie-Cheng Ding,Xiao Ling Zhao,Q. Y. Zhang,Rui Zou
出处
期刊:Journal of Engineering Design [Informa]
卷期号:35 (8): 1023-1048 被引量:1
标识
DOI:10.1080/09544828.2024.2355762
摘要

It is crucial to understand and meet the multi-dimensional affective image needs of users for product form in a user demand-oriented product development model. Multi-objective evolutionary algorithms based on decomposition will be introduced into the field of kansei engineering to carry out research on product form optimisation design based on multi-objective evolutionary algorithms. A constrained multi-objective discrete optimisation model was established using the kansei engineering prediction model constructed through machine learning techniques as the objective function, and a reference vector guided evolutionary algorithm was used to solve it. The superiority of this method was verified by comparing it with other commonly used solving methods in this field. Combining entropy weight method and TOPSIS, select the optimisation design scheme that best meets the multi-dimensional affective needs of users from the obtained pareto set. Taking the train as an example, the proposed method was explained. The results indicate that the optimisation scheme obtained by this method can achieve the improvement and optimisation of product form in multiple affective dimensions. Meanwhile, a comparative study on the applicability of multi-objective evolutionary algorithms in the form optimisation problem of different affective dimensions is carried out to provide reference and suggestions for subsequent product design research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助成就小蜜蜂采纳,获得10
2秒前
3秒前
郝瑞之发布了新的文献求助10
4秒前
JamesPei应助灰灰采纳,获得10
5秒前
一枚小豆发布了新的文献求助10
5秒前
7秒前
共享精神应助包容的世倌采纳,获得10
8秒前
Ava应助风趣的烤鸡采纳,获得10
8秒前
jiujiuwo完成签到,获得积分10
10秒前
10秒前
SciGPT应助泽鑫采纳,获得10
10秒前
zyr完成签到 ,获得积分10
11秒前
11秒前
ding应助iuv采纳,获得10
11秒前
ZYK发布了新的文献求助10
13秒前
libiqing77完成签到,获得积分10
13秒前
细细完成签到,获得积分10
13秒前
郝瑞之完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
Singularity发布了新的文献求助10
16秒前
16秒前
白小白完成签到,获得积分10
16秒前
16秒前
____(fg)完成签到 ,获得积分10
17秒前
20秒前
iuv发布了新的文献求助10
20秒前
1111关注了科研通微信公众号
22秒前
科研通AI2S应助郝瑞之采纳,获得10
22秒前
斯文败类应助知涯采纳,获得10
23秒前
一枚小豆完成签到,获得积分10
23秒前
和谐翠丝发布了新的文献求助10
23秒前
Liu_Ci发布了新的文献求助10
23秒前
Agoni完成签到,获得积分10
25秒前
桐桐应助轩轩采纳,获得10
26秒前
oky完成签到 ,获得积分10
27秒前
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139078
求助须知:如何正确求助?哪些是违规求助? 2789947
关于积分的说明 7793264
捐赠科研通 2446392
什么是DOI,文献DOI怎么找? 1301085
科研通“疑难数据库(出版商)”最低求助积分说明 626105
版权声明 601102