清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Green bonds forecasting: evidence from pre-crisis, Covid-19 and Russian–Ukrainian crisis frameworks

乌克兰语 2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 俄罗斯联邦 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 金融危机 金融体系 业务 经济 经济政策 病毒学 凯恩斯经济学 医学 内科学 哲学 语言学 疾病 爆发 传染病(医学专业)
作者
Souhir Amri Amamou,Mouna Ben Daoud,Saoussen Aguir Bargaoui
出处
期刊:Journal of Economic Studies [Emerald (MCB UP)]
标识
DOI:10.1108/jes-01-2024-0061
摘要

Purpose Without precedent, green bonds confront, for the first time since their emergence, a twofold crisis context, namely the Covid-19-Russian–Ukrainian crisis period. In this context, this paper aims to investigate the connectedness between the two pioneering bond market classes that are conventional and treasury, with the green bonds market. Design/methodology/approach In their forecasting target, authors use a Support Vector Regression model on daily S&P 500 Green, Conventional and Treasury Bond Indexes for a year from 2012 to 2022. Findings Authors argue that conventional bonds could better explain and predict green bonds than treasury bonds for the three studied sub-periods (pre-crisis period, Covid-19 crisis and Covid-19-Russian–Ukrainian crisis period). Furthermore, conventional and treasury bonds lose their forecasting power in crisis framework due to enhancements in market connectedness relationships. This effect makes spillovers in bond markets more sensitive to crisis and less predictable. Furthermore, this research paper indicates that even if the indicators of the COVID-19 crisis have stagnated and the markets have adapted to this rather harsh economic framework, the forecast errors persist higher than in the pre-crisis phase due to the Russian–Ukrainian crisis effect not yet addressed by the literature. Originality/value This study has several implications for the field of green bond forecasting. It not only illuminates the market participants to the best market forecasters, but it also contributes to the literature by proposing an unadvanced investigation of green bonds forecasting in Crisis periods that could help market participants and market policymakers to anticipate market evolutions and adapt their strategies to period specificities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小田完成签到 ,获得积分10
2秒前
goodsheep完成签到 ,获得积分10
12秒前
helen李完成签到 ,获得积分10
13秒前
赵赵完成签到 ,获得积分10
16秒前
科科通通完成签到,获得积分10
20秒前
柴郡喵完成签到,获得积分10
24秒前
0m0完成签到 ,获得积分10
28秒前
zm完成签到 ,获得积分10
33秒前
大饼完成签到 ,获得积分10
44秒前
空白完成签到 ,获得积分10
1分钟前
xinjiasuki完成签到 ,获得积分10
1分钟前
1分钟前
小天小天完成签到 ,获得积分10
1分钟前
白昼完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分0
1分钟前
feiyang完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
图南完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zw完成签到,获得积分10
1分钟前
Xzx1995完成签到 ,获得积分10
1分钟前
如意书桃完成签到 ,获得积分10
2分钟前
大雪完成签到 ,获得积分10
2分钟前
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
Wenwen0809完成签到 ,获得积分20
2分钟前
海贼王的男人完成签到 ,获得积分10
2分钟前
从全世界路过完成签到 ,获得积分10
2分钟前
2分钟前
詹姆斯哈登完成签到,获得积分10
3分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
fdwonder完成签到,获得积分10
3分钟前
个性松完成签到 ,获得积分10
3分钟前
点点完成签到 ,获得积分10
3分钟前
Hu完成签到,获得积分20
3分钟前
现实的曼安完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
OSASACB完成签到 ,获得积分10
3分钟前
Laraineww完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700