亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Green bonds forecasting: evidence from pre-crisis, Covid-19 and Russian–Ukrainian crisis frameworks

乌克兰语 2019年冠状病毒病(COVID-19) 2019-20冠状病毒爆发 俄罗斯联邦 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 金融危机 金融体系 业务 经济 经济政策 病毒学 凯恩斯经济学 医学 内科学 传染病(医学专业) 哲学 疾病 爆发 语言学
作者
Souhir Amri Amamou,Mouna Ben Daoud,Saoussen Aguir Bargaoui
出处
期刊:Journal of Economic Studies [Emerald Publishing Limited]
标识
DOI:10.1108/jes-01-2024-0061
摘要

Purpose Without precedent, green bonds confront, for the first time since their emergence, a twofold crisis context, namely the Covid-19-Russian–Ukrainian crisis period. In this context, this paper aims to investigate the connectedness between the two pioneering bond market classes that are conventional and treasury, with the green bonds market. Design/methodology/approach In their forecasting target, authors use a Support Vector Regression model on daily S&P 500 Green, Conventional and Treasury Bond Indexes for a year from 2012 to 2022. Findings Authors argue that conventional bonds could better explain and predict green bonds than treasury bonds for the three studied sub-periods (pre-crisis period, Covid-19 crisis and Covid-19-Russian–Ukrainian crisis period). Furthermore, conventional and treasury bonds lose their forecasting power in crisis framework due to enhancements in market connectedness relationships. This effect makes spillovers in bond markets more sensitive to crisis and less predictable. Furthermore, this research paper indicates that even if the indicators of the COVID-19 crisis have stagnated and the markets have adapted to this rather harsh economic framework, the forecast errors persist higher than in the pre-crisis phase due to the Russian–Ukrainian crisis effect not yet addressed by the literature. Originality/value This study has several implications for the field of green bond forecasting. It not only illuminates the market participants to the best market forecasters, but it also contributes to the literature by proposing an unadvanced investigation of green bonds forecasting in Crisis periods that could help market participants and market policymakers to anticipate market evolutions and adapt their strategies to period specificities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助顺利的尔芙采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
丝垚完成签到 ,获得积分10
10秒前
Akim应助无风采纳,获得10
50秒前
孙雪君完成签到,获得积分10
1分钟前
孙雪君发布了新的文献求助10
1分钟前
xiaolang2004完成签到,获得积分10
1分钟前
无花果应助lu采纳,获得10
1分钟前
无用的老董西完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无风完成签到 ,获得积分10
1分钟前
nickel完成签到,获得积分10
1分钟前
花无双完成签到,获得积分0
1分钟前
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
yx_cheng应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
无风完成签到,获得积分10
2分钟前
无风发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
上官若男应助崔哥采纳,获得30
3分钟前
3分钟前
崔哥完成签到,获得积分20
3分钟前
崔哥发布了新的文献求助30
3分钟前
CMY发布了新的文献求助10
3分钟前
999完成签到,获得积分10
3分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
yx_cheng应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
Xuemin完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008271
求助须知:如何正确求助?哪些是违规求助? 3548012
关于积分的说明 11298627
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188