A comprehensive survey on the use of deep learning techniques in glioblastoma

计算机科学 胶质母细胞瘤 深度学习 表观遗传学 人工智能 个性化医疗 机器学习 数据科学 生物信息学 生物 医学 基因表达 DNA甲基化 癌症研究 生物化学 基因
作者
Ichraq El Hachimy,Douae Kabelma,Chaimae Echcharef,Mohamed Hassani,Nabil Benamar,Nabil Hajji
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102902-102902
标识
DOI:10.1016/j.artmed.2024.102902
摘要

Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene expression, driven by alterations in epigenetic mechanisms. The integration of artificial intelligence, inclusive of machine learning algorithms, has emerged as an indispensable asset in medical analyses. AI is becoming a necessary tool in medicine and beyond. Current research on Glioblastoma predominantly revolves around non-omics data modalities, prominently including magnetic resonance imaging, computed tomography, and positron emission tomography. Nonetheless, the assimilation of omic data—encompassing gene expression through transcriptomics and epigenomics—offers pivotal insights into patients' conditions. These insights, reciprocally, hold significant value in refining diagnoses, guiding decision- making processes, and devising efficacious treatment strategies. This survey's core objective encompasses a comprehensive exploration of noteworthy applications of machine learning methodologies in the domain of glioblastoma, alongside closely associated research pursuits. The study accentuates the deployment of artificial intelligence techniques for both non-omics and omics data, encompassing a range of tasks. Furthermore, the survey underscores the intricate challenges posed by the inherent heterogeneity of Glioblastoma, delving into strategies aimed at addressing its multifaceted nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Ran完成签到 ,获得积分10
4秒前
孤星泪完成签到,获得积分10
4秒前
颖宝老公完成签到,获得积分10
6秒前
冥月发布了新的文献求助10
8秒前
羽化成仙完成签到 ,获得积分10
9秒前
科研通AI2S应助zhouji采纳,获得10
9秒前
小蘑菇应助Jenny采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
kedaya应助科研通管家采纳,获得10
12秒前
贰鸟应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
Gauss应助科研通管家采纳,获得30
12秒前
贰鸟应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
贰鸟应助科研通管家采纳,获得10
12秒前
贰鸟应助科研通管家采纳,获得10
12秒前
Olivia完成签到 ,获得积分10
13秒前
火山上的鲍师傅完成签到,获得积分10
13秒前
zxcvbnm完成签到 ,获得积分10
15秒前
yile完成签到,获得积分10
15秒前
17秒前
香蕉梨愁完成签到 ,获得积分10
17秒前
冥月完成签到,获得积分10
18秒前
yuaasusanaann完成签到,获得积分10
20秒前
青山落日秋月春风完成签到,获得积分10
21秒前
争气完成签到,获得积分10
21秒前
甜粥完成签到,获得积分20
24秒前
Sober完成签到 ,获得积分10
25秒前
要减肥的半山完成签到,获得积分10
27秒前
深情安青应助渊思采纳,获得10
27秒前
在水一方应助菜鸟12采纳,获得10
29秒前
干饭大王应助Olivia采纳,获得20
30秒前
思源应助糖葫芦采纳,获得20
31秒前
32秒前
我爱达不溜完成签到,获得积分20
34秒前
王昕钥发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343