A comprehensive survey on the use of deep learning techniques in glioblastoma

计算机科学 胶质母细胞瘤 深度学习 表观遗传学 人工智能 个性化医疗 机器学习 数据科学 生物信息学 生物 医学 基因表达 DNA甲基化 癌症研究 生物化学 基因
作者
Ichraq El Hachimy,Douae Kabelma,Chaimae Echcharef,Mohamed Hassani,Nabil Benamar,Nabil Hajji
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:154: 102902-102902 被引量:8
标识
DOI:10.1016/j.artmed.2024.102902
摘要

Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene expression, driven by alterations in epigenetic mechanisms. The integration of artificial intelligence, inclusive of machine learning algorithms, has emerged as an indispensable asset in medical analyses. AI is becoming a necessary tool in medicine and beyond. Current research on Glioblastoma predominantly revolves around non-omics data modalities, prominently including magnetic resonance imaging, computed tomography, and positron emission tomography. Nonetheless, the assimilation of omic data—encompassing gene expression through transcriptomics and epigenomics—offers pivotal insights into patients' conditions. These insights, reciprocally, hold significant value in refining diagnoses, guiding decision- making processes, and devising efficacious treatment strategies. This survey's core objective encompasses a comprehensive exploration of noteworthy applications of machine learning methodologies in the domain of glioblastoma, alongside closely associated research pursuits. The study accentuates the deployment of artificial intelligence techniques for both non-omics and omics data, encompassing a range of tasks. Furthermore, the survey underscores the intricate challenges posed by the inherent heterogeneity of Glioblastoma, delving into strategies aimed at addressing its multifaceted nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
零下保温杯完成签到,获得积分10
2秒前
liguang8完成签到,获得积分10
2秒前
苏暮雨发布了新的文献求助10
2秒前
2秒前
3秒前
科研不通发布了新的文献求助10
3秒前
所所应助cookangdavid采纳,获得10
4秒前
4秒前
善学以致用应助陈三更采纳,获得10
4秒前
4秒前
斯文败类应助如意的新蕾采纳,获得10
4秒前
顾矜应助毛毛采纳,获得10
5秒前
合欢发布了新的文献求助10
5秒前
lyy完成签到 ,获得积分10
5秒前
!!!完成签到,获得积分20
5秒前
迟迟完成签到 ,获得积分10
6秒前
6秒前
mmzz完成签到,获得积分10
7秒前
7秒前
Owen应助Star采纳,获得10
7秒前
彭于晏应助burger-v-采纳,获得10
7秒前
8秒前
ste发布了新的文献求助10
8秒前
ljxx发布了新的文献求助10
9秒前
9秒前
云影cns完成签到 ,获得积分10
9秒前
9秒前
斯文败类应助小薛采纳,获得10
11秒前
豌豆猪猪完成签到,获得积分10
11秒前
11秒前
科研通AI6应助!!!采纳,获得10
12秒前
可爱的函函应助静曼采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
Arisqotle发布了新的文献求助10
14秒前
多多发布了新的文献求助10
15秒前
15秒前
BALB/c饲养员完成签到,获得积分10
15秒前
乐乐应助无有采纳,获得10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442722
求助须知:如何正确求助?哪些是违规求助? 4552855
关于积分的说明 14239277
捐赠科研通 4474129
什么是DOI,文献DOI怎么找? 2451921
邀请新用户注册赠送积分活动 1442839
关于科研通互助平台的介绍 1418593