计算机科学
胶质母细胞瘤
深度学习
表观遗传学
人工智能
个性化医疗
机器学习
数据科学
生物信息学
生物
医学
基因表达
DNA甲基化
癌症研究
生物化学
基因
作者
Ichraq El Hachimy,Douae Kabelma,Chaimae Echcharef,Mohamed Hassani,Nabil Benamar,Nabil Hajji
标识
DOI:10.1016/j.artmed.2024.102902
摘要
Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene expression, driven by alterations in epigenetic mechanisms. The integration of artificial intelligence, inclusive of machine learning algorithms, has emerged as an indispensable asset in medical analyses. AI is becoming a necessary tool in medicine and beyond. Current research on Glioblastoma predominantly revolves around non-omics data modalities, prominently including magnetic resonance imaging, computed tomography, and positron emission tomography. Nonetheless, the assimilation of omic data—encompassing gene expression through transcriptomics and epigenomics—offers pivotal insights into patients' conditions. These insights, reciprocally, hold significant value in refining diagnoses, guiding decision- making processes, and devising efficacious treatment strategies. This survey's core objective encompasses a comprehensive exploration of noteworthy applications of machine learning methodologies in the domain of glioblastoma, alongside closely associated research pursuits. The study accentuates the deployment of artificial intelligence techniques for both non-omics and omics data, encompassing a range of tasks. Furthermore, the survey underscores the intricate challenges posed by the inherent heterogeneity of Glioblastoma, delving into strategies aimed at addressing its multifaceted nature.
科研通智能强力驱动
Strongly Powered by AbleSci AI