A comprehensive survey on the use of deep learning techniques in glioblastoma

计算机科学 胶质母细胞瘤 深度学习 表观遗传学 人工智能 个性化医疗 机器学习 数据科学 生物信息学 生物 医学 基因表达 DNA甲基化 癌症研究 生物化学 基因
作者
Ichraq El Hachimy,Douae Kabelma,Chaimae Echcharef,Mohamed Hassani,Nabil Benamar,Nabil Hajji
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:154: 102902-102902
标识
DOI:10.1016/j.artmed.2024.102902
摘要

Glioblastoma, characterized as a grade 4 astrocytoma, stands out as the most aggressive brain tumor, often leading to dire outcomes. The challenge of treating glioblastoma is exacerbated by the convergence of genetic mutations and disruptions in gene expression, driven by alterations in epigenetic mechanisms. The integration of artificial intelligence, inclusive of machine learning algorithms, has emerged as an indispensable asset in medical analyses. AI is becoming a necessary tool in medicine and beyond. Current research on Glioblastoma predominantly revolves around non-omics data modalities, prominently including magnetic resonance imaging, computed tomography, and positron emission tomography. Nonetheless, the assimilation of omic data—encompassing gene expression through transcriptomics and epigenomics—offers pivotal insights into patients' conditions. These insights, reciprocally, hold significant value in refining diagnoses, guiding decision- making processes, and devising efficacious treatment strategies. This survey's core objective encompasses a comprehensive exploration of noteworthy applications of machine learning methodologies in the domain of glioblastoma, alongside closely associated research pursuits. The study accentuates the deployment of artificial intelligence techniques for both non-omics and omics data, encompassing a range of tasks. Furthermore, the survey underscores the intricate challenges posed by the inherent heterogeneity of Glioblastoma, delving into strategies aimed at addressing its multifaceted nature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bibi发布了新的文献求助10
刚刚
111完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
不想再哭发布了新的文献求助10
2秒前
CheeseD发布了新的文献求助10
2秒前
故渊完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
张爽发布了新的文献求助20
4秒前
故渊发布了新的文献求助10
6秒前
啊嘞嘞发布了新的文献求助10
7秒前
Amy发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
张献忠发布了新的文献求助10
10秒前
10秒前
325715完成签到,获得积分10
11秒前
学术妲己完成签到,获得积分10
11秒前
李亚楠完成签到,获得积分10
12秒前
ZZY关闭了ZZY文献求助
12秒前
AG杰完成签到 ,获得积分20
13秒前
量子星尘发布了新的文献求助10
15秒前
工艺员发布了新的文献求助10
15秒前
Amy完成签到,获得积分10
16秒前
gww发布了新的文献求助10
17秒前
张献忠完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
19秒前
CipherSage应助zerovb3采纳,获得10
19秒前
解语花发布了新的文献求助50
22秒前
22秒前
22秒前
健壮问枫发布了新的文献求助30
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590231
求助须知:如何正确求助?哪些是违规求助? 4005083
关于积分的说明 12400271
捐赠科研通 3682147
什么是DOI,文献DOI怎么找? 2029449
邀请新用户注册赠送积分活动 1063022
科研通“疑难数据库(出版商)”最低求助积分说明 948604