A Novel Machine Learning Model for Efficacy Prediction of Immunotherapy-Chemotherapy in NSCLC Based on CT Radiomics

肺癌 支持向量机 医学 机器学习 人工智能 免疫疗法 计算机科学 肿瘤科 内科学 癌症
作者
Chengye Li,Zhifeng Zhou,Lingxian Hou,Ke‐Li Hu,Zongda Wu,Yupeng Xie,Jinsheng Ouyang,Xueding Cai
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108638-108638
标识
DOI:10.1016/j.compbiomed.2024.108638
摘要

Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. For patients with advanced NSCLC that do not have oncogene addiction, the preferred treatment approach is a combination of immunotherapy and chemotherapy. However, the progression-free survival (PFS) typically ranges only from about 6 to 8 months, accompanied by certain adverse events. In order to carry out individualized treatment more effectively, it is urgent to accurately screen patients with PFS for more than 12 months under this treatment regimen. Therefore, this study undertook a retrospective collection of pulmonary CT images from 60 patients diagnosed with NSCLC treated at the First Affiliated Hospital of Wenzhou Medical University. It developed a machine learning model, designated as bSGSRIME-SVM, which integrates the rime optimization algorithm with self-adaptive Gaussian kernel probability search (SGSRIME) and support vector machine (SVM) classifier. Specifically, the model initiates its process by employing the SGSRIME algorithm to identify pivotal image features. Subsequently, it utilizes an SVM classifier to assess these features, aiming to enhance the model's predictive accuracy. Initially, the superior optimization capability and robustness of SGSRIME in IEEE CEC 2017 benchmark functions were validated. Subsequently, employing color moments and gray-level co-occurrence matrix methods, image features were extracted from images of 60 NSCLC patients undergoing immunotherapy combined with chemotherapy. The developed model was then utilized for analysis. The results indicate a significant advantage of the model in predicting the efficacy of immunotherapy combined with chemotherapy for NSCLC, with an accuracy of 92.381% and a specificity of 96.667%. This lays the foundation for more accurate PFS predictions and personalized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
张欣冉完成签到 ,获得积分10
2秒前
hinelson发布了新的文献求助10
4秒前
李爱国应助缪甲烷采纳,获得10
5秒前
星桥火树彻明开完成签到,获得积分10
6秒前
7秒前
ZHAOKE发布了新的文献求助10
8秒前
8秒前
Tung关注了科研通微信公众号
8秒前
9秒前
YM完成签到,获得积分10
10秒前
Owen应助jbz采纳,获得10
10秒前
舒畅发布了新的文献求助10
10秒前
是氓呀发布了新的文献求助10
12秒前
端庄修杰发布了新的文献求助10
12秒前
yq发布了新的文献求助10
13秒前
视觉牛马发布了新的文献求助10
13秒前
袁道郎发布了新的文献求助20
15秒前
15秒前
洪艳应助小糖豆采纳,获得20
16秒前
舒畅完成签到,获得积分10
16秒前
16秒前
汉堡包应助ZHAOKE采纳,获得10
17秒前
money发布了新的文献求助10
18秒前
大模型应助zhangkx23采纳,获得10
19秒前
19秒前
科研通AI2S应助che采纳,获得30
19秒前
19秒前
今后应助platanus采纳,获得10
20秒前
娜行发布了新的文献求助20
20秒前
王哈哈发布了新的文献求助10
20秒前
甜蜜绿柏完成签到,获得积分10
20秒前
20秒前
laogao完成签到,获得积分10
20秒前
21秒前
21秒前
852应助小白采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328