A Novel Machine Learning Model for Efficacy Prediction of Immunotherapy-Chemotherapy in NSCLC Based on CT Radiomics

肺癌 支持向量机 医学 机器学习 人工智能 免疫疗法 计算机科学 肿瘤科 内科学 癌症
作者
Chengye Li,Zhifeng Zhou,Lingxian Hou,Ke‐Li Hu,Zongda Wu,Yupeng Xie,Jinsheng Ouyang,Xueding Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108638-108638 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108638
摘要

Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. For patients with advanced NSCLC that do not have oncogene addiction, the preferred treatment approach is a combination of immunotherapy and chemotherapy. However, the progression-free survival (PFS) typically ranges only from about 6 to 8 months, accompanied by certain adverse events. In order to carry out individualized treatment more effectively, it is urgent to accurately screen patients with PFS for more than 12 months under this treatment regimen. Therefore, this study undertook a retrospective collection of pulmonary CT images from 60 patients diagnosed with NSCLC treated at the First Affiliated Hospital of Wenzhou Medical University. It developed a machine learning model, designated as bSGSRIME-SVM, which integrates the rime optimization algorithm with self-adaptive Gaussian kernel probability search (SGSRIME) and support vector machine (SVM) classifier. Specifically, the model initiates its process by employing the SGSRIME algorithm to identify pivotal image features. Subsequently, it utilizes an SVM classifier to assess these features, aiming to enhance the model's predictive accuracy. Initially, the superior optimization capability and robustness of SGSRIME in IEEE CEC 2017 benchmark functions were validated. Subsequently, employing color moments and gray-level co-occurrence matrix methods, image features were extracted from images of 60 NSCLC patients undergoing immunotherapy combined with chemotherapy. The developed model was then utilized for analysis. The results indicate a significant advantage of the model in predicting the efficacy of immunotherapy combined with chemotherapy for NSCLC, with an accuracy of 92.381% and a specificity of 96.667%. This lays the foundation for more accurate PFS predictions and personalized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐州檀完成签到,获得积分10
刚刚
1秒前
香蕉静芙完成签到,获得积分20
1秒前
C·麦塔芬完成签到,获得积分10
2秒前
小许完成签到 ,获得积分10
2秒前
qqqq22完成签到,获得积分10
2秒前
3秒前
蔡蔡发布了新的文献求助10
3秒前
小二郎应助羊羊采纳,获得10
4秒前
elidan发布了新的文献求助10
4秒前
wangklvin发布了新的文献求助10
5秒前
liber完成签到 ,获得积分10
5秒前
行动完成签到,获得积分10
6秒前
谢书南完成签到,获得积分10
6秒前
生动的踏歌完成签到,获得积分10
6秒前
阿白完成签到 ,获得积分10
7秒前
7秒前
杨衡发布了新的文献求助10
7秒前
贺贺完成签到,获得积分10
7秒前
施青文完成签到,获得积分10
7秒前
8秒前
exy完成签到,获得积分10
9秒前
mljever完成签到,获得积分10
9秒前
Serendiply完成签到,获得积分10
10秒前
10秒前
10秒前
elidan完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
10秒前
Ding应助科研皇帝的民工采纳,获得10
11秒前
Zhang完成签到,获得积分10
11秒前
李世民完成签到,获得积分20
12秒前
lzw发布了新的文献求助10
12秒前
聪明的破茧完成签到,获得积分10
12秒前
科研通AI2S应助Coatings采纳,获得10
13秒前
摸鱼校尉完成签到,获得积分0
14秒前
bkagyin应助Dr.Liujun采纳,获得10
14秒前
Zsy发布了新的文献求助10
14秒前
wangklvin完成签到,获得积分10
14秒前
单薄归尘完成签到 ,获得积分10
15秒前
ANT完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259