Merging Multi-Level Evidential Observations for Dynamic Reliability Assessment of Hierarchical Multi-State Systems: A Dynamic Bayesian Network Approach

动态贝叶斯网络 可靠性(半导体) 计算机科学 贝叶斯网络 贝叶斯概率 国家(计算机科学) 数据挖掘 可靠性工程 机器学习 人工智能 工程类 算法 物理 功率(物理) 量子力学
作者
Tudi Huang,Tangfan Xiahou,Jinhua Mi,Hong Chen,Hong‐Zhong Huang,Yu Liu
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:249: 110225-110225 被引量:2
标识
DOI:10.1016/j.ress.2024.110225
摘要

Dynamic reliability assessment has offered a new paradigm for engineered systems to integrate multi-level observations to update the reliability measures of a specific running system. The existent work on dynamic reliability assessment can only leverage precise observations and cannot be straightforwardly implemented in scenarios where observations are imprecise. However, the observations are inevitably imprecise owing to the limited accuracy of inspection techniques and vague judgments of the system state. In engineering scenarios, multi-state systems (MSSs) with a hierarchical structure are commonly existent, and the imprecise observations can be collected across multiple physical levels of the system. In this article, the uncertainty associated with imprecise observations is characterized by the evidence theory, and it can be therefore regarded as an evidential form. A dynamic Bayesian network (DBN) model is utilized to evaluate the reliability of hierarchical MSSs with multi-level evidential observations. Subsequently, the evidence theory is implemented to quantify epistemic uncertainties associated with imprecise observations. These observations, sourced from multiple physical levels, are merged by the DBN model using the Dempster rule of combination (DRC) to update the reliability of a specific running system in a dynamic fashion. The feasibility and correctness of the proposed method have been demonstrated through a numerical case and a real engineering case of a kerosene filling control system (KFCS), and the result indicates that the proposed DBN-based algorithm methods have high applicability and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
warren发布了新的文献求助10
刚刚
专注刺猬完成签到,获得积分10
刚刚
孤独的匕发布了新的文献求助10
1秒前
旷意发布了新的文献求助10
2秒前
2秒前
zmy完成签到,获得积分20
3秒前
3秒前
勤劳尔丝完成签到 ,获得积分10
4秒前
doudou完成签到,获得积分10
4秒前
scl关注了科研通微信公众号
4秒前
5秒前
战场原荡漾完成签到,获得积分10
5秒前
胖小羊发布了新的文献求助10
6秒前
7秒前
852应助YI点半的飞机场采纳,获得10
7秒前
Change_Jing完成签到,获得积分10
7秒前
Change_Jing发布了新的文献求助30
11秒前
雷霆康康完成签到,获得积分10
11秒前
爆米花应助岳莹晓采纳,获得10
12秒前
13秒前
illiterate完成签到,获得积分10
14秒前
科研通AI2S应助jbear采纳,获得10
16秒前
17秒前
阔达的盼波完成签到,获得积分10
17秒前
17秒前
思源应助秃头钙钛矿采纳,获得10
17秒前
星辰大海应助聂学雨采纳,获得10
17秒前
A哇咔咔咔发布了新的文献求助10
18秒前
21秒前
追光的人给追光的人的求助进行了留言
21秒前
21秒前
瘦瘦怜阳发布了新的文献求助30
22秒前
22秒前
TINA完成签到,获得积分10
23秒前
领导范儿应助lt采纳,获得10
23秒前
pufanlg完成签到,获得积分10
23秒前
随便发布了新的文献求助10
24秒前
25秒前
蒙奇奇发布了新的文献求助10
25秒前
gzw应助felix采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135007
求助须知:如何正确求助?哪些是违规求助? 2785964
关于积分的说明 7774560
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298183
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825